Skip to main content
Log in

X-ray Analysis of Short-Range Order in Iron–Gallium Solid Solutions

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The atomic structure of single crystal specimens of Fe–Ga alloys containing 4, 9, and 18 at % gallium has been studied by the X-ray diffraction method. The specimens were heat treated via two modes: annealing in paramagnetic state with subsequent quenching in water and annealing in ferromagnetic state with slow cooling to room temperature. Analysis of X-ray diffraction patterns indicates that the short-range order of the D03 type is formed in the alloy with 18 at % gallium; moreover the volume fraction of regions of the D03 phase considerably increases upon annealing. In the alloys with 4 and 9 at % gallium, the short-range order of the D03 type is absent. For all compositions, near the nodes (001), (003), and (111) we observe diffuse peaks whose intensities are independent of the heat treatment mode. It is shown that their appearance is related to the presence of small clusters of B2 type. The role of the observed structural peculiarities in the formation of magnetoelastic properties of Fe–Ga alloys is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. E. Clark, J. B. Restorff, M. Wun-Fogle, T. A. Lograsso, and D. L. Schlagel, “Magnetostrictive properties of body-centered cubic Fe–Ga and Fe–Ga–Al alloys,” IEEE Trans. Magn. 36 (5), 3238–3240 (2019).

    Article  Google Scholar 

  2. J. R. Cullen, A. E. Clark, M. Wun-Fogle, J. B. Restorff, and T. A. Lograsso, “Magnetoelasticity of Fe–Ga and Fe–Al alloys,” J. Magn. Magn. Mater. 226–230, 948–949 (2001), Part 1.

  3. A. E. Clark, K. B. Hathaway, M. Wun-Fogle, J. B. Restorff, T. A. Lograsso, V. M. Keppens, G. Petculescu, and R. A. Taylor, “Extraordinary magnetoelasticity and lattice softening in bcc Fe–Ga alloys,” J. Appl. Phys. 93 (10), 8621–8623 (2003).

    Article  CAS  Google Scholar 

  4. A. E. Clark, J. B. Restorff, M. Wun-Fogle, K. W. Dennis, T. A. Lograsso, and R. W. McCallum, “Temperature dependence of the magnetic anisotropy and magnetostriction of Fe100 – xGax (x = 8.6, 16.6, 28.5),” J. Appl. Phys. 97 (10), 10M316(1–3) (2005).

  5. E. M. Summers, T. A. Lograsso, and M. Wun-Fogle, “Magnetostriction of binary and ternary Fe–Ga alloys,” J. Mater. Sci. 42, 9582–9594 (2007).

    Article  CAS  Google Scholar 

  6. A. E. Clark, J. -H. Yoo, J. R. Cullen, M. Wun-Fogle, G. Petculescu, and A. Flatau, “Stress dependent magnetostriction in highly magnetostrictive Fe100 – xGax, 20 < x < 30,” J. Appl. Phys. 105 (7), 07A913(1–3) (2009).

  7. J. B. Restorff, M. Wun-Fogle, K. B. Hathaway, A. E. Clark, T. A. Lograsso, and G. Petculescu, “Tetragonal magnetostriction and magnetoelastic coupling in Fe–Al, Fe–Ga, Fe–Ge, Fe–Si, Fe–Ga–Al and Fe–Ga–Ge alloys,” J. Appl. Phys. 111, 023905(1–12) (2009).

  8. I. S. Golovin, V. V. Palacheva, A. K. Mokhamed, and A. M. Balagurov, “Structure and properties of Fe–Ga alloys as promising materials for electronics,” Phys. Met. Metallogr. 121, 851–893 (2020).

    Article  CAS  Google Scholar 

  9. J. Atulasimha and A. B. Flatau, “A review of magnetostrictive iron–gallium alloys,” Smart Mater. Struct. 20 (4), 043001(1–15) (2011).

  10. O. Kubaschewski, Iron-Binary Phase Diagrams (Springer, Berlin, 1982).

    Google Scholar 

  11. O. Ikeda, R. Kainuma, I. Ohnuma, K. Fukamichi, and K. J. Ishida, “Phase equilibria and stability of ordered b.c.c. phases in the Fe-rich portion of the Fe–Ga system,” J. Alloys Compd. 347 (1–2), 198–205 (2002).

    Article  Google Scholar 

  12. A. K. Mohamed, V. V. Cheverikin, S. V. Medvedeva, I. A. Bobrikov, A. M. Balagurov, and I. S. Golovin, “First- and second-order phase transitions in Fe–(17–19) at. % Ga alloys,” Mater. Lett. 279, 128508(1–4) (2020).

  13. M. C. Zhang, H. L. Jiang, X. X. Gao, J. Zhu, and S. Z. Zhou, “Magnetostriction and microstructure of the melt-spun Fe83Ga17 alloy,” J. Appl. Phys. 99 (2), 023903(1–3) (2006).

  14. S. Pascarelli, M. P. Ruffoni, R. S. Turtelli, F. Kubel, and R. Grössinger, “Local structure in magnetostrictive melt-spun Fe80Ga20 alloys,” Phys. Rev. B 77, 184406(1–8) (2008).

  15. G. Petculescu, R. Wu, and R. J. McQueeney, “Magnetoelasticity of bcc Fe–Ga Alloys,” in Handbook of Magnetic Materials, Ed. by K. H. J. Buschow (Elsevier, Oxford, 2012), Vol. 20, pp. 123–226.

    Google Scholar 

  16. H. Wang, Y. N. Zhang, R. Q. Wu, L. Z. Sun, D. S. Xu, and Z. D. Zhang, “Understanding strong magnetostriction in Fe100 – xGax alloys,” Sci. Rep. 3 (1), 3521(1–5) (2013).

  17. D. Viehland, J. F. Li, T. Lograsso, and M. Wuttig, “Structural studies of Fe0.81Ga0.19 by reciprocal space mapping,” Appl. Phys. Lett. 81 (17), 3185–3187 (2013).

    Article  Google Scholar 

  18. T. A. Lograsso and E. M. Summers, “Detection and quantification of D03 chemical order in Fe–Ga alloys using high resolution X-ray diffraction,” Mater. Sci. Eng., A 416 (1–2), 240–245 (2006).

    Article  Google Scholar 

  19. H. Cao, P. M. Gehring, C. P. Devreugd, J. A. Rodriguez-Rivera, J. Li, and D. Viehland, “Role of nanoscale precipitates on the enhanced magnetostriction of heat-treated Galfenol (Fe1 – xGax) alloys,” Phys. Rev. Lett. 102, 127201(1–4) (2009).

  20. Y. Du, M. Huang, S. Chang, D. L. Schlagel, T. A. Lograsso, and R. J. McQueeney, “Relation between Ga ordering and magnetostriction of Fe–Ga alloys studied by X-ray diffuse scattering,” Phys. Rev. B 81 (5), 054432(1–9) (2010).

  21. Y. Du, M. Huang, T. A. Lograsso, and R. J. McQueeney, “X-ray diffuse scattering measurements of chemical short-range order and lattice strains in a highly magnetostrictive Fe0.813Ga0.187 alloy in an applied magnetic field,” Phys. Rev. B 85 (21), 214437(1–6) (2012).

  22. Y. Ke, C. Jianga, J. Tao, and H. Duan, “Local inhomogeneous structural origin of giant magnetostriction in Fe–Ga alloys,” J. Alloys Compd. 725 (1–2), 14–22 (2017).

    Article  CAS  Google Scholar 

  23. N. Rahman, M. Li, T. Ma, and M. Yan, “Microstructural origin of the magnetostriction deterioration in slowly cooled Fe81Ga19,” J. Alloys Compd. 786, 300–305 (2019).

    Article  CAS  Google Scholar 

  24. T. A. Lograsso, A. R. Ross, D. L. Schlagel, A. E. Clark, and M. Wun-Fogled, “Structural transformations in quenched Fe–Ga alloys,” J. Alloys Compd. 350 (1–2), 95–101 (2003).

    Article  CAS  Google Scholar 

  25. Y. K. He, X. Ke, C. Jiang, N. Miao, H. Wang, J. M. D. Coey, Y. Wang, and H. Xu, “Interaction of trace rare-earth dopants and nanoheterogeneities induces giant magnetostriction in Fe-Ga alloys,” Adv. Funct. Mater. 28 (20), 1800858(1–9) (2018).

  26. R. Wu, “Origin of large magnetostriction in FeGa alloys,” J. Appl. Phys. 91, 7358–7360 (2002).

    Article  CAS  Google Scholar 

  27. Y. N. Zhang, J. X. Cao, and R. Q. Wu, “Rigid band model for prediction of magnetostriction of iron- gallium alloys,” Appl. Phys. Lett. 96, 062508 (2010).

    Article  Google Scholar 

  28. Y. Zhang and R. Wu, “Mechanism of large magnetostriction of Galfenol,” IEEE Trans Magn. 47, 4044–4049 (2011).

    Article  CAS  Google Scholar 

  29. Y. Zhang, H. Wang, and R. Wu, “First-principles determination of the rhombohedral magnetostriction of Fe100 – xAlx and Fe100 – xGax alloys,” Phys. Rev. B 86, 224410(1–6) (2012).

  30. G. A. Marchant, C. E. Patrick, and J. B. Staunton, “Ab initio calculations of temperature-dependent magnetostriction of Fe and A2 Fe1 – xGax within the disordered local moment picture,” Phys. Rev. B 99, 054415(1–12) (2019).

  31. G. A. Marchant, C. D. Woodgate, C. E. Patrick, and J. B. Staunton, “Ab initio calculations of the phase behavior and subsequent magnetostriction of Fe1 – xGax within the disordered local moment picture,” Phys. Rev. B 103, 094414(1–14) (2021).

  32. A. G. Lesnik, Induced Magnetic Anisotropy (Naukova dumka, Kiev, 1976) [in Russian].

    Google Scholar 

  33. Yu. P. Chernenkov, N. V. Ershov, V. A. Lukshina, V. I. Fedorov, and B. K. Sokolov, “An X-ray diffraction study of the short-range ordering in the soft-magnetic Fe–Si alloys with induced magnetic anisotropy,” Phys. B: Condens. Matter 396 (1–2), 220–230 (2007).

    Article  CAS  Google Scholar 

  34. N. V. Ershov, Yu. P. Chernenkov, V. A. Lukshina, and V. I. Fedorov, “ Structure of α-FeSi alloys with 8 and 10 at % silicon,” Phys. Solid State 54 (9), 1935–1942 (2012).

    Article  CAS  Google Scholar 

  35. Yu. P. Chernenkov, N. V. Ershov, and V. A. Lukshina, “Effect of annealing in a ferromagnetic state on the structure of an Fe–18 at % Ga alloy,” Phys. Solid State 60, 2370–2380 (2018).

    Article  CAS  Google Scholar 

  36. N. V. Ershov, Yu. P. Chernenkov, V. A. Lukshina, and O. P. Smirnov, “Short-range order in α-FeAl soft magnetic alloy,” Phys. Solid State 60 (9), 1661‒1673 (2018).

    Article  CAS  Google Scholar 

  37. Yu. P. Chernenkov, V. I. Fedorov, V. A. Lukshina, B. K. Sokolov, and N. V. Ershov, “X-ray diffuse scattering from a-Fe and a-Fe1 – xSix single crystals,” Phys. Met. Metallogr. 100 (3), 235 (2005).

    Google Scholar 

  38. B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction (Prentice-Hall, New York, 2001).

    Google Scholar 

  39. C. Dasarathy and W. Hume-Rothery, “The system iron-gallium,” Proc. RSL Ser. A 286, 141–157 (1965).

  40. V. A. Lukshina, D. A. Shishkin, A. R. Kuznetsov, H. V. Ershov, and Yu. N. Gornostyrev, “ Effect of magnetic field annealing on magnetic properties of iron–gallium alloys,” Phys. Solid State 62 (10), 1746–1754 (2020).

    Article  CAS  Google Scholar 

  41. Q. Xing, Y. Du, R. J. McQueeney, and T. A. Lograsso, “Structural investigations of Fe–Ga alloys: Phase relations and magnetostrictive behavior,” Acta Mater. 56, 4536–4546 (2008).

    Article  CAS  Google Scholar 

Download references

Funding

The work is supported by the Russian Science Foundation, project no. 22-12-00179.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Ershov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Oborin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernenkov, Y.P., Ershov, N.V., Gornostyrev, Y.N. et al. X-ray Analysis of Short-Range Order in Iron–Gallium Solid Solutions. Phys. Metals Metallogr. 123, 987–995 (2022). https://doi.org/10.1134/S0031918X22600944

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X22600944

Keywords:

Navigation