Skip to main content
Log in

Model of Primary Recrystallization in Pure Copper

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

A new model that describes primary recrystallization in metals has been proposed. This model determines the rate of recrystallization nucleus growth in terms of the kinetics of the decreasing power of disclination dipoles distributed within nucleus boundaries. The equation relating the volume fraction of recrystallized material to the temperature and annealing time has been derived. This equation has the form of the Avrami equation at n = 1 and an activation energy of diffusion along nonequilibrium grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. I. S. Golovin, “Grain-boundary relaxation in copper before and after equal-channel angular pressing and recrystallization,” Phys. Met. Metallogr., No. 4, 405–413 (2010).

  2. O. S. Novikova and A. Yu. Volkov, “Kinetics of atomic ordering of Cu-49 at % Pd alloy after severe plastic deformation,” Phys. Met. Metallogr., No. 2, 179–188 (2013).

  3. A. Yu. Churyumova and A. V. Pozdnyakov, “Simulation of microstructure evolution in metal materials under hot plastic deformation and heat treatment,” Phys. Met. Metallogr. 121, No. 11, 1064–1086 (2020).

    Article  Google Scholar 

  4. B. Hutchinson, S. Jonsson, and L. Ryde, “On the kinetics of recrystallisation in cold worked metals,” Scr. Metall. 23, No. 5, 671–676 (1989).

    Article  CAS  Google Scholar 

  5. P. Kruger and E. Woldt, “The use of an activation energy distribution for the analysis of the recrystallization kinetics of copper,” Acta Metall. Mater. 40, No. 11, 2933–2942 (1992).

    Article  Google Scholar 

  6. D. P. Field, M. M. Nowell, P. Trivedi, S. I. Wright, and T. M. Lillo, “Local orientation gradient and recrystallization of deformed copper,” Solid State Phenom. 105, 157–162 (2005).

    Article  CAS  Google Scholar 

  7. N. Hansen, T. Leffers, and J. K. Kjems, “Recrystallization kinetics in copper investigated by in situ texture measurements by neutron diffraction,” Acta Metall. 29, No. 8, 1523–1533 (1981).

    Article  CAS  Google Scholar 

  8. T. Nanda, B. R. Kumar, S. Sharma, V. Singh, and O. P. Pandey, “Effect of thermal cycling process parameters on recrystallization kinetics for processing of fine-grained pure copper,” Mater. Manuf. Process. 32, No. 1, 34–43 (2017).

    Article  CAS  Google Scholar 

  9. A. Pérez, J. P. Lopez-Olmedo, and J. Farjas, “Isoconversional analysis of copper recrystallization,” Therm. Anal. Calorim. 125, No. 2, 667–672 (2016).

    Article  Google Scholar 

  10. R. Niu, Ke. Han, Yi-F. Su, T. Besara, T. M. Siegrist, and X. Zuo, “Influence of grain boundary characteristics on thermal stability in nanotwinned copper,” Sci. Rep. 6 (2016).

  11. E. Woldt and D. J. Jensen, “Recrystallization kinetics in copper: Comparison between techniques,” Metall. Mater. Trans. A 26, No. 7, 1717–1724 (1995).

    Article  Google Scholar 

  12. R. A. Vandermeer and B. B. Rath, “Modeling recrystallization kinetics in a deformed iron single crystal,” Metall. Trans. A 20, 391 (1989).

    Article  Google Scholar 

  13. T. Furu and E. Nes, Recrystallization’92 Ed. by S. Fuentes (San Sebastian, 1992), p. 311.

    Google Scholar 

  14. A. N. Kolmogorov, “On the statistical theory of crystallization of metals,” Izv. Akad. Nauk SSSR, Ser. Matematika., No. 1, 355–359 (1937).

  15. N. S. Kondrat’ev and P. V. Trusov, “Mechanisms for the formation of recrystallization nuclei in metals during thermomechanical treatment,” Vestnik Permskogo Natsional’Nogo Issledovatel’Skogo Politekhnicheskogo Un-ta. Mekhanika, No. 4, 151–174 (2016).

    Google Scholar 

  16. V. H. Perevezentsev, V. V. Rybin, and V. N. Chuvil’deev, “Accumulation of defects at grain boundaries and limiting characteristics of structural superplasticity,” Poverkhnost: Fiz., Khim., Mekh., No.10, 108–115 (1983).

  17. P. H. Pumphrey and H. Gleiter, “The annealing of dislocations in high-angle grain boundaries,” Philos. Mag. A 30, 593–602 (1974).

    Article  CAS  Google Scholar 

  18. R. A. Varin, “Spreading of extrinsic grain boundary dislocations in austenitic steel,” Phys. Status Solidi A 52, 347–356 (1979).

    Article  CAS  Google Scholar 

  19. V. N. Chuvil’deev, Non-Equilibrium Grain Boundaries in Metals. Theory and Applications (Fizmatlit, Moscow, 2004) [in Russian].

    Google Scholar 

  20. S. S. Gorelik, S. V. Dobatkin, and L. M. Kaputkina, Recrystallization of Metals and Alloys (MISiS, Moscow, 2005) [in Russian].

  21. F. Khessner, Recrystallization of Metallic Materials (Metallurgiya, Moscow, 1982) [in Russian]

    Google Scholar 

  22. A. Rollett, G. Rohrer, and J. Humphreys, Recrystallization and Related Annealing Phenomena (Elsevier, 2017).

    Google Scholar 

  23. C. J. Smithells, Metals Reference Book (Butterworths, London, 1967).

    Google Scholar 

Download references

Funding

The work is supported by the Ministry of Science and Higher Education, grant no. 075-03-2020-191/15.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Sakharov.

Additional information

Translated by T. Gapontseva

APPENDIX

APPENDIX

Numerical values of parameters

Label

Parameter

Typical numerical value

Source

Ab, Aω, Aρ

Numerical coefficients

10

[19]

b

Burgers vector

2.56 × 10–10 m

[23]

k

Coefficient in the Avrami equation

10–1–10–5 sn

[4]–[11]

d *

The mass transfer scale at which the total charge of

disclination dipoles is equal to zero

0.3 μm

[19]

D b

Diffusion coefficient at equilibrium boundaries

3.8 × 10–13 cm2/s

[19]

\(D_{b}^{*}\)

Diffusion coefficient at nonequilibrium boundaries

5 × 10–13–5 × 10–11 cm2/s

[19]

\(D_{{b0}}^{*}\)

Pre-exponential multiplier of the diffusion coefficient

along nonequilibrium grain boundaries

9.8 × 10–2 cm2/s

[19]

D L0

Pre-exponential multiplier of the diffusion coefficient

in the melt

1.5 × 10–3 cm2/s

[19]

G

Shear modulus

42 GPa

[23]

k

Boltzmann constant

1.38 × 10–23 J/К

[23]

M

Mobility of the defective boundary

10–12 cm3 N–1 s–1

[19]

M b

Mobility of the defect-free boundary

10–8 cm3 N–1 s–1

[19]

M ω

Mobility of the disclination dipole

10–12 cm3 N–1 s–1

[19]

M ρ

Mobility of OMDs

10–9 cm3 N–1 s–1

[19]

n

Coefficient in the Avrami equation

0.32–4.8

[4]–[11]

P

Driving forces of the growth of recrystallization nuclei

104 N/cm2

[20]–[22]

Q

Activation energy in the Avrami equation

7.6–15.3 kTm

[4]–[11]

\(Q_{b}^{*}\)

Diffusion activation energy along nonequilibrium boundaries

6–8.5 kTm

[19]

Q L

Diffusion activation energy in the melt

3.6 kTm

[23]

R

Universal gas constant

8.3

[23]

t

Incubation period of recrystallization

3600 s

[19]

t 3

Typical time of the decreasing power of a disclination dipole

103 s

[19]

T m

Melting temperature of copper

1357 К

[23]

W 1

Values used to calculate the diffusion coefficient along nonequilibrium boundaries and dependent on the thermodynamic characteristics of the material

6.75 kTm

[19]

W 2

11.3 kTm

[19]

Z 1

12 k

[19]

Z 2

9.6 k

[19]

α

Relative free volume of grain boundaries

0.35–0.4

[19]

α*

Threshold free volume of boundaries

0.5

[19]

Δα

Defect-induced change in the free volume of boundaries

0.01–0.1

[19]

αB

Coefficient in Eq. (6)

0.02 (at T = 0.5Tm)

[19]

δ

Grain boundary width

5 × 10–8 cm

[19]

φ

Numerical coefficient in Eq. (4)

0.1

[19]

ρbΔb

Density of OMDs

10–3

[19]

ω

Power of a disclination dipole

10–2–10–1

[19]

ω0

Initial power of a disclination dipole

10–1

[19]

Ω

Atomic volume of copper

1.18 × 10–29 m3

[23]

GΩ/kTm

26.5

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakharov, N.V., Chuvil’deev, V.N. Model of Primary Recrystallization in Pure Copper. Phys. Metals Metallogr. 122, 673–680 (2021). https://doi.org/10.1134/S0031918X21070085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X21070085

Keywords:

Navigation