Skip to main content
Log in

X-Ray Spectroscopy of Cobaltites

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The ability of cobalt to take, depending on the temperature, pressure, and doping, various charge and spin states in oxide compounds periodically becomes the topic of scientific controversy and is a frequent cause of ambiguity in the interpretation of experimental results. In this review, we will discuss cobaltites, i.e., oxide compounds of cobalt, in which cobalt is in an oxidation state (charge state) of 3+. In these compounds, Co3+ ions can take the following spin configurations: high-spin, low-spin, and intermediate-spin configurations. The conditions for the formation of various spin states are given on the basis of the Tanabe–Sugano diagrams. It is shown how X-ray spectral methods, such as X-ray photoelectron spectroscopy, X-ray emission spectroscopy, X-ray absorption spectroscopy, and X-ray magnetic dichroism, can be used to study cobaltites. By using Co L2,3 X-ray absorption spectra that have a rich structure, one can determine the charge and spin states of cobalt ions. These spectra can be reproduced by atom-like multiplet calculations that involve many electrons and use the energy splitting of atomic orbitals by the ligand field as a free parameter. Absorption K spectra of oxygen are of a band nature, i.e., these spectra can be used, by mixing the 3d states of cobalt with the 2p states of oxygen, to estimate the spin state of cobalt ions and to analyze cobaltite phases after external influences. It is shown that the spin states of cobalt ions can be determined from Co Kβ X‑ray emission spectra (electronic transition \(3p \to 1s\)) that are sensitive to the spin state of 3d electrons because of the strong exchange interaction between the 3p hole and 3d orbitals in the final state of the emission process. A classic example of cobaltites with a low-spin configuration of cobalt ions is lithium cobaltite LiCoO2 that is a well-known material for power source cathodes. The nature of holes in defective cobaltites of the LixCoO2 (x < 1) type is considered. It is shown that holes arising from defects in the lithium sublattice are of an oxygen nature. In cobaltite LaCoO3 that also contains trivalent cobalt ions, a transition from a low-spin state to a high-spin state occurs at temperatures above 90 K. The feasibility of an intermediate-spin state in this compound is also considered. The results of X-ray spectral studies of double substitution perovskites Ln1 – xAxCo1 – yMyO3 (Ln is a lanthanide, A is Ca or Sr, and M is a transition element) are given, and changes in the charge states of cobalt ions upon doping of perovskites are shown. The results of experimental determination of spin states in octahedrons and pyramids of cobaltites LnBaCo2O6 – δ (\(0 \leqslant \delta \leqslant 1\)) at temperatures below and above the temperature of the metal-insulator transition are systematized. Methods for determining spin states on the basis of X-ray spectral data are discussed. It is shown in the last section of the article how the charge state and concentration of cobalt ions in doped layered cobaltites LnBaCo4O7 can be determined using X-ray absorption spectroscopy. In these compounds, cobalt ions are in tetrahedral positions and, consequently, trivalent cobalt ions should be exclusively in the high-spin state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.

Similar content being viewed by others

REFERENCES

  1. Y. Tanabe and S. Sugano, “On the absorption spectra of complex ions. I,” J. Phys. Soc. Jpn. 9, 753–766 (1954).

    Article  CAS  Google Scholar 

  2. Z. Ropka and R. J. Radwanski, “The Jahn–Teller-effect formation of the non-magnetic state of the Co3+ ion in LaCoO3,” Phys. B 312313, 777–779 (2002).

    Article  Google Scholar 

  3. M. W. Haverkort, Z. Hu, J, Cezar, T. Burnus, H. Hartmann, M. Reuther, C. Zobel, T. Lorenz, A. Tanaka, N. B. Brookes, H. H. Hsieh, H.-J. Lin, C. T. Chen, and L. H. Tjeng, “Spin state transition in LaCoO3 studied using soft X-ray absorption spectroscopy and magnetic circular dichroism,” Phys. Rev. Lett. 97, 176405 (2006).

    Article  CAS  Google Scholar 

  4. N. B. Ivanova, S. G. Ovchinnikov, M. M. Korshunov, I. M. Eremin, and N. V. Kazak, “Specific features of spin, charge, and orbital ordering in cobaltites,” Phys.-Usp. 52, 789–810 (2009).

    Article  CAS  Google Scholar 

  5. N. Hollmann, M. W. Haverkort, M. Benomar, M. Cwik, M. Braden, and T. Lorenz, “Evidence for a temperature-induced spin-state transition of Co3+ in La2 – xSrxCoO4,” Phys. Rev. B 83, 174435 (2011).

    Article  CAS  Google Scholar 

  6. S. G. Ovchinnikov and Yu. S. Orlov, “Covalence-induced stabilization of an intermediate-spin state and the magnetic susceptibility of LaCoO3,” J. Exp. Theor. Phys. 104, 436–444 (2007).

    Article  CAS  Google Scholar 

  7. V. A. Dudnikov, Yu. S. Orlov, N. V. Kazak, M. S. Platunov, and S. G. Ovchinnikov, “Anomalies of the electronic structure and physical properties of rare-earth cobaltites near spin crossover, JETP Lett. 104, 588–600 (2016).

    Article  CAS  Google Scholar 

  8. I. O. Troyanchuk, M. V. Bushinskii, V. A. Khomchenko, V. V. Sikolenko, C. Ritter, and S. Schorr, “Origins of the appearance of ferromagnetic state and colossal magnetoresistance in cobaltites,” Phys. Met. Metallogr. 120, 325–332 (2019).

    Article  CAS  Google Scholar 

  9. A. Maignan, V. Caignaert, B. Raveau, D. Khomskii, and G. Sawatzky, “Thermoelectric power of HoBaCo2O5.5: Possible evidence of the spin blockade in cobaltites,” Phys. Rev. Lett. 93, 026401 (2004).

    Article  CAS  Google Scholar 

  10. K. Tomiyasu, S. I. Koyama, M. Watahiki, M. Sato, K. Nishihara, M. Onodera, K. Iwasa, T. Nojima, Y. Yamasaki, H. Nakao, and Y. Murakami, “Spin-blockade activation in electron-doped LaCoO3,” arXiv: 1503.02139 [cond-mat.str-el].

  11. C. F. Chang, Z. Hu, H. Wu, T. Burnus, N. Hollmann, M. Benomar, T. Lorenz, A. Tanaka, H.-J. Lin, H. H. Hsieh, C. T. Chen, and L. H. Tjeng, “Spin blockade, orbital occupation, and charge ordering in La1.5Sr0.5CoO4,” Phys. Rev. Lett. 102, 116401 (2009).

    Article  CAS  Google Scholar 

  12. J. Matsuno, Y. Okimoto, Z. Fang, X. Z. Yu, Y. Matsui, N. Nagaosa, M. Kawasaki, and Y. Tokura, “Metallic ferromagnet with square-lattice CoO2 sheets,” Phys. Rev. Lett. 93, 167202 (2004).

    Article  CAS  Google Scholar 

  13. J. Wu, “Metal-insulator transition in Sr2 – xLaxCoO4 driven by spin-state transition,” Phys. Rev. B 86, 075120 (2012).

    Article  CAS  Google Scholar 

  14. X. Ou, F. Fan, Z. Li, H. Wang, and H. Wu,” Spin-state transition induced half metallicity in a cobaltate from first principles,” Appl. Phys. Lett. 108, 092402 (2016).

    Article  CAS  Google Scholar 

  15. N. Hollmann, Z. Hu, M. Valldor, A. Maignan, A. Tanaka, H. H. Hsieh, H.-J. Lin, C. T. Chen, and L. H. Tjeng, “Electronic and magnetic properties of the kagome systems YBaCo4O7 and YBaCo3MO7 (M = Al, Fe),” Phys. Rev. B 80, 085111 (2009)

    Article  CAS  Google Scholar 

  16. C. J. Ballhausen, Introduction to Ligand Field Theory (McGraw-Hill, New York, 1962), p. 305.

    Google Scholar 

  17. S. L. Hulbert and G. P. Williams, 1. Synchrotron radiation sources, Vacuum Ultraviolet Spectroscopy, Ed. by J. A. R. Samson and D. L. Ederer (Burlington: Academic Press, 2000), pp. 1–25.

    Google Scholar 

  18. Ya. V. Zubavichus and Yu. L. Slovokhotov, “X-Ray synchrotron radiation in physicochemical studies,” Russ. Chem. Rev. 70, 373–403 (2001).

    Article  CAS  Google Scholar 

  19. M. A. Blokhin, Physics of X-rays (Izd. LGU, Leningrad, 1971) [in Russian].

    Google Scholar 

  20. T. M. Zimkina and V. A. Fomichev, Ultrasoft X-ray Spectroscopy (Naukova Dumka, Kiev, 1972) [in Russian].

    Google Scholar 

  21. V. V. Nemoshkalenko, X-ray Emission Spectroscopy of Metals and Alloys (Naukova Dumka, Kiev, 1972) [in Russian].

    Google Scholar 

  22. V. V. Nemoshkalenko and V. G. Aleshin, Theoretical Foundations of X-ray Emission Spectroscopy (Naukova Dumka, Kiev, 1974) [in Russian].

    Google Scholar 

  23. K. Siegbahn, C. Nordling, A. Fahlman, R. Nordberg, K. Hamrin, J. Hedman, G. Johansson, T. Bergmark, S.-E. Karlsson, I. Lindgren, and B. Lindberg, ESCA: Atomic, Molecular and Solid State Structure Studied by Means of Electron Spectroscopy, Nova Acta Regiae Soc. Sci. Upsaliensis, Ser. IV, Vol. 20 (1967).

  24. V. V. Nemoshkalenko and V. G. Aleshin, Electron Spectroscopy of Crystals (Naukova Dumka, Kiev, 1976) [in Russian].

    Google Scholar 

  25. L. N. Mazalov, X-ray Spectra (NIIC SB RAS, Novosibirsk, 2003) [in Russian].

    Google Scholar 

  26. E. Z. Kurmaev, V. M. Cherkashenko, and L. D. Finkel’shtein, X-ray Spectra of Solids (Nauka, Moscow, 1988), p. 175.

    Google Scholar 

  27. V. I. Nefedov and V. T. Cherepin, X-ray Photoelectron Spectroscopy of Solid Surfaces (The Netherlands, Utrecht, 1988), p. 191.

    Google Scholar 

  28. L. N. Mazalov, I. Asanov, and V. Varnek, “Study of electronic structure of spin-transition complexes by XPS and Mössbauer spectroscopy,” J. Electron Spectrosc. Relat. Phenom. 96, 209–214 (1998).

    Article  CAS  Google Scholar 

  29. S. Hüfner, Photoelectron Spectroscopy. Principles and Applications (Springer, Berlin, 1995), p. 670.

    Book  Google Scholar 

  30. D. P. Frikkel, M. V. Kuznetsov, and E. V. Shalaeva, “Reconstructive chemosorption of oxygen on Ti(0001): XPS and XRD study,” Phys. Met. Metallogr. 85, 452–462 (1998).

    Google Scholar 

  31. G. Van der Laan, C. Westra, C. Haas, and G. A. Sawatzky, “Satellite structure in photoelectron and Auger spectra of copper dihalides,” Phys. Rev. B 23, 4369–4380 (1981).

    Article  CAS  Google Scholar 

  32. S. Hüfner, J. Osterwalder, T. Riesterer, and F. Hulliger, “Photoemission and inverse photoemission spectroscopy of NiO,” Solid State Commun. 52, 793–796 (1984).

    Article  Google Scholar 

  33. K. Okada and A. Kotani, “Complementary roles of Co \(2p\) X-ray absorption and photoemission spectra in CoO,” J. Phys. Soc. Jpn. 61, 449–453 (1992).

    Article  CAS  Google Scholar 

  34. F. Himpsel and T. Fauster, “Probing valence states with photoemission and inverse photoemission,” J. Vac. Sci. Technol., A 2, 815–821 (1984).

    Article  CAS  Google Scholar 

  35. Y. Ma, “X-ray absorption, emission, and resonant inelastic scattering in solids,” Phys. Rev. B 49, 5799–5805 (1994).

    Article  CAS  Google Scholar 

  36. S. M. Butorin, J. -H. Guo, M. Magnuson, and J. Nordgren, “Resonant inelastic soft-X-ray scattering from valence-band excitations in 3d 0 compounds,” Phys. Rev. B 55, 4242–4249 (1997).

    Article  CAS  Google Scholar 

  37. P. Kuiper, J.- H. Guo, Duda L.-C. Såthe, J. Nordgren, J. J. M. Pothuizen, F. M. F. de Groot, and G. A. Sawatzky, “Resonant X-ray Raman spectra of Cu dd excitations in \({\text{S}}{{{\text{r}}}_{{\text{2}}}}{\text{Cu}}{{{\text{O}}}_{{\text{2}}}}{\text{C}}{{{\text{l}}}_{{\text{2}}}}\),” Phys. Rev. Lett. 80, 5204–5207 (1998).

    Article  CAS  Google Scholar 

  38. E. Z. Kurmaev, M. A. Korotin, V. R. Galakhov, L. D. Finkelstein, E. I. Zabolotzky, N. N. Efremova, N. I. Lobachevskaya, S. Stadler, D. L. Ederer, T. A.Callcott, L. Zhou, A. Moewes, S. Bartkowski, M. Neumann, J. Matsuno, T. Mizokawa, A. Fujimori, and J. Mitchell, “X-ray emission and photoelectron spectra of Pr0.5Sr0.5MnO3,” Phys. Rev. B 59, 12799–12806 (1999).

    Article  CAS  Google Scholar 

  39. M. Magnuson, S. M. Butorin, S. Sathe, J. Nordgren, and P. Ravindran, “Spin transition in LaCoO3 investigated by resonant soft X-ray emission spectroscopy,” Europhys. Lett. 68, 285–295 (2004).

    Article  CAS  Google Scholar 

  40. J. N. Van Vleck, “The Dirac vector model in complex spectra,” Phys. Rev. 45, 405–419 (1934).

    Article  CAS  Google Scholar 

  41. K. Tsutsumi, H. Nakamori, and K. Ichikawa, “X-ray Mn \(K\beta \) emission spectra of manganese oxides and manganates,” Phys. Rev. B 13, 929–933 (1976).

    Article  CAS  Google Scholar 

  42. J.-P. Rueff, C.-C. Kao, V. V. Struzhkin, J. Badro, J. Shu, R. J. Hemley, and H. K. Mao, “Pressure-induced high-spin to low-spin transition in FeS evidenced by X-ray emission spectroscopy,” Phys. Rev. Lett. 82, 3284–3287 (1999).

    Article  CAS  Google Scholar 

  43. G. Vankó, T. Neisius, G. Molnár, F. Renz, S. Kárpáti, A. Shukla, and F. M. F. de Groot, “Probing the 3d spin momentum with X-ray emission spectroscopy: The case of molecular-spin transitions,” J. Phys. Chem. B 110, 11647–11653 (2006).

    Article  CAS  Google Scholar 

  44. J.-M. Chen, Y.-Y. Chin, M. Valldor, Z. Hu, J.‑M. Lee, S.-C. Haw, N. Hiraoka, H. Ishii, C.‑W. Pao, K.-D. Tsuei, J.-F. Lee, H.-J. Lin, L.‑Y. Jang, A. Tanaka, C.-T. Chen, and L. H. Tjeng, “A complete high-to-low spin state transition of trivalent cobalt ion in octahedral symmetry in SrCo0.5Ru0.5O3 – δ,” J. Am. Chem. Soc. 136, 1514–1519 (2014).

    Article  CAS  Google Scholar 

  45. J. Stöhr, NEXAFS Spectroscopy 25 (Springer, New York, 1992), p. 403.

    Book  Google Scholar 

  46. C. T. Chen, “Recent advances in soft-X-ray absorption spectroscopy,” Jpn. J. Appl. Phys. 32, 155–159 (1993).

    Article  CAS  Google Scholar 

  47. P. Glatzel and U. Bergmann, “High resolution \(1s\) core hole X-ray spectroscopy in \(3d\) transition metal complexes—electronic and structural information,” Coordination Chem. Rev. 249, 65–95 (2005).

    Article  CAS  Google Scholar 

  48. A. Moewes, “Recent Developments in Soft X-Ray Absorption Spectroscopy,” in Handbook of Solid State Chemistry (2017), Vol. 4, Chap. 11, pp. 361–391.

  49. J. Jaklevic, J. A. Kirby, M. P. Klein, A. S. Robertson, G. S. Brown, and P. Eisenberger, “Fluorescence detection of EXAFS: Sensitivity enhancement for dilute species and thin films,” Solid State Commun. 23, 679–682 (1977).

    Article  CAS  Google Scholar 

  50. W. Gudat and C. Kunz, “Close similarity between photoelectric yield and photoabsorption spectra in the soft-X-ray range,” Phys. Rev. Lett. 29, 169–172 (1972).

    Article  CAS  Google Scholar 

  51. A. J. Achkar, T. Z. Regier, H. Wadati, Y.-J. Kim, H. Zhang, and D. G. Hawthorn, “Bulk sensitive X-ray absorption spectroscopy free of self-absorption effects,” Phys. Rev. B 83, 081106 (2011).

    Article  CAS  Google Scholar 

  52. M. Niibe, T. Kotaka, and T. Mitamura, “Investigation of analyzing depth of N-K absorption spectra measured using TEY and TFY methods,” J. Phys.: Conf. Ser. 425, 132008 (2013).

    Google Scholar 

  53. M. Abbate, J. Goedkoop, F. De Groot, M. Grioni, J. C. Fuggle, S. Hofmann, H. Petersen, and M. Sacchi, “Probing depth of soft X-ray absorption spectroscopy measured in total-electron-yield mode,” Surf. Interface Anal. 18, 65–69 (1992).

    Article  CAS  Google Scholar 

  54. S. L. M. Schroeder, G. D. Moggridge, R. M. Ormerod, T. Rayment, and R. M. Lambert, “What determines the probing depth of electron yield XAS?,” Surf. Sci. 324, 371–377 (1995).

    Article  Google Scholar 

  55. B. H. Frazer, B. Gilbert, B. R. Sonderegger, and G. D. Stasio, “The probing depth of total electron yield in the sub-keV range: TEY-XAS and X-PEEM,” Surf. Sci. 537, 161–167 (2003).

    Article  CAS  Google Scholar 

  56. N. Isomura, T. Murai, T. Nomoto, and Y. Kimoto, “Surface EXAFS via differential electron yield,” J. Synchrotron Radiat. 24, 445–448 (2017).

    Article  CAS  Google Scholar 

  57. F. De Groot and A. Kotani, Core Level Spectroscopy of Solids (CRC Press, Boca Raton, 2008), p. 512.

    Book  Google Scholar 

  58. G. R. Shulman, Y. Yafet, P. Eisenberger, and W. E. Blumberg, “Observations and interpretation of X-ray absorption edges in iron compounds and proteins,” Proc. Natl. Acad. Sci. U. S. A. 73, 1384–1388 (1976).

    Article  CAS  Google Scholar 

  59. M. Medarde, C. Dallera, M. Grioni, J. Voigt, A. Podlesnyak, E. Pomjakushina, K. Conder, T. Neisius, O. Tjernberg, and S. N. Barilo, “Low-temperature spin-state transition in LaCoO3 investigated using resonant X-ray absorption at the CoK edge,” Phys. Rev. B 73, 054424 (2006).

    Article  CAS  Google Scholar 

  60. F. M. F. De Groot, “High-resolution X-ray emission and X-ray absorption spectroscopy,” Chem. Rev. 101, 1779–1808 (2001).

    Article  CAS  Google Scholar 

  61. R. D. Cowan, The Theory of Atomic Structure and Spectra (Los Alamos series in basic and Applied Sciences, 1981), p. 650.

  62. E. Stavitski and F. M. F. de Groot, “The CTM4XAS program for EELS and XAS spectral shape analysis of transition metal L edges,” Micron 41, 687–694 (2010).

    Article  CAS  Google Scholar 

  63. E. Stavitski and F. M. F. de Groot, CTM4XAS 3.1—Charge Transfer Multiplet Calculations for X-Ray Absorption Spectroscopy: Simulations of XAS, XPS and XES Spectra of Transition Metal Systems (Utrecht University, 2010).

    Google Scholar 

  64. B. T. Thole, G. Van der Laan, and G. A. Sawatzky, “Strong magnetic dichroism predicted in the \({{M}_{{4,5}}}\) X‑ray absorption spectra of magnetic rare-earth materials,” Phys. Rev. Lett. 55, 2086–2088 (1985).

    Article  CAS  Google Scholar 

  65. G. Van der Laan, B. T. Thole, G. A. Sawatzky, J. B. Goedkoop, J. C. Fuggle, J.-M. Esteva, R. Karnatak, J. P. Remeika, and H. A. Dabkowska, “Experimental proof of magnetic X-ray dichroism,” Phys. Rev. B 34, 6529–6531 (1986).

    Article  CAS  Google Scholar 

  66. G. Schütz, R. Frahm, P. Mautner, R. Wienke, W. Wagner, W. Wilhelm, and P. Kienle, “Spin-dependent extended X-ray-absorption fine structure: Probing magnetic short-range order,” Phys. Rev. Lett. 62, 2620–2623 (1989).

    Article  Google Scholar 

  67. A. Rogalev, F. Wilhelm, N. Jaouen, J. Goulon, and J. Kappler, X-ray Magnetic Circular Dichroism: Historical Perspective and Recent Highlights (Springer, Berlin Heidelberg, 2006), pp. 71–93.

    Google Scholar 

  68. V. I. Grebennikov, “Magnetic dichroism in X-ray photoemission,” Phys. Met. Metallogr. 107, 523–533 (2009).

    Article  Google Scholar 

  69. A. F. Starace, “Potential-barrier effects in photoabsorption. I. General theory,” Phys. Rev. B 5, 1773–1784 (1972).

    Article  Google Scholar 

  70. G. Van der Laan and B. T. Thole, “Local probe for spin-orbit interaction,” Phys. Rev. Lett. 60, 1977–1980 (1988).

    Article  CAS  Google Scholar 

  71. P. Carra, “Sum rules for X-ray absorption and dichroism,” J. Electron Spectrosc. Relat. Phenom. 86, 139–142 (1997).

    Article  CAS  Google Scholar 

  72. Kuepper, M. Raekers, C. Taubitz, M. Uhlarz, C. Piamonteze, F. M. F. de Groot, E. Arenholz, V. R. Galakhov, Y. M. Mukovskii, and M. Neumann, “The X-ray magnetic circular dichroism spin sum rule for 3d 4 systems: Mn3+ ions in colossal magnetoresistance manganites,” J. Phys.: Condens. Matter 24, 435602 (2012).

    CAS  Google Scholar 

  73. P. F. Bongers, Doctoral Dissertation (Leiden, 1957).

  74. J. -M. Tarascon and M. Armand, “Issues and challenges facing rechargeable lithium batteries,” J. Power Sources 414, 359–367 (2001).

    CAS  Google Scholar 

  75. P. Kuiper, G. Kruizinga, J. Ghijsen, G. A. Sawatzky, and H. Verweij, “Character of holes in Li1 – xNi1 – xO and their magnetic behavior,” Phys. Rev. Lett. 62, 221–224 (1989).

    Article  CAS  Google Scholar 

  76. J. Van Elp, H. Eskes, P. Kuiper, and G. A. Sawatzky, “Electronic structure of Li-doped NiO,” Phys. Rev. B 45, 1612–1622 (1992).

    Article  CAS  Google Scholar 

  77. N. Nücker, J. Fink, J. C. Fuggle, P. J. Durham, and W. M. Temmerman, “Evidence for holes on oxygen sites in the high-\({{T}_{c}}\) superconductors La2 – xSrxCuO4 and YBa2Cu3O7 – y,” Phys. Rev. B 37, 5158–5163 (1988).

    Article  Google Scholar 

  78. G. Kaindl, D. Sarma, O. Strebel, C. Simmons, U. Neukirch, R. Hoppe, and H. Moller, “On the \(3d\)-configuration of copper in high-\({{T}_{c}}\) superconductors,” Phys. C: Supercond. 153–155, 139–140 (1988).

    Article  Google Scholar 

  79. W.-S. Yoon, K. Y. Chung, J. McBreen, D. A. Fischer, and X.-Q. Yang, “Changes in electronic structure of the electrochemically Li-ion deintercalated LiNiO2 system investigated by soft X-ray absorption spectroscopy,” J. Power Sources 163, 234–237 (2006).

    Article  CAS  Google Scholar 

  80. J. Van Elp, J. L. Wieland, H. Eskes, P. Kuiper, G. A. Sawatzky, F. M. F. de Groot, and T. S. Turner, “Electronic structure of CoO, Li-doped CoO, and LiCoO2,” Phys. Rev. B 44, 6090–6103 (1991).

    Article  CAS  Google Scholar 

  81. F. M. F. De Groot, M. Abbate, J. van Elp, G. A. Sawatzky, Y. J. Ma, C. T. Chen, and F. Sette, “Oxygen 1s and cobalt 2p X-ray absorption of cobalt oxides,” J. Phys.: Condens. Matter 5, 2277–2288 (1993).

    CAS  Google Scholar 

  82. J. P. Kemp and P. A. Cox, “Electronic structure of LiCoO2 and related materials; photoemission studies,” J. Phys.: Condens. Matter 2, 9653–9667 (1990).

    CAS  Google Scholar 

  83. V. R. Galakhov, E. Z. Kurmaev, S. Uhlenbrock, M. Neumann, D. G. Kellerman, and V. S. Gorshkov, “Degree of covalency of LiCoO2: X-ray emission and photoelectron study,” Solid State Commun. 99, 221–224 (1996).

    Article  CAS  Google Scholar 

  84. D. Ensling, A. Thissen, S. Laubach, P. C. Schmidt, and W. Jaegermann, “Electronic structure of LiCoO2 thin films: A combined photoemission spectroscopy and density functional theory study,” Phys. Rev. B 82, 195431 (2010).

    Article  CAS  Google Scholar 

  85. V. R. Galakhov, N. A. Ovechkina, A. S. Shkvarin, E. Z. Kurmaev, S. N. Shamin, K. Kuepper, A. Takacs, M. Raekers, S. Robin, M. Neumann, G.-N. Gavrila, A. S. Semenova, D. G. Kellerman, T. Kaambre, and J. Nordgren, “Electronic structure and X-ray spectra of defective oxides LixCoO2,” Phys. Rev. B 46, 045120 (2006).

    Article  CAS  Google Scholar 

  86. M. T. Czyżyk, R. Potze, and G. A. Sawatzky, “Band-theory description of high-energy spectroscopy and the electronic structure of LiCoO2,” Phys. Rev. B 46, 3729–3735 (1992).

    Article  Google Scholar 

  87. N. V. Kosova, V. V. Kaichev, V. I. Bukhtiyarov, D. G. Kellerman, E. T. Devyatkina, and T. V. Larina, “Electronic state of cobalt and oxygen ions in stoichiometric and nonstoichiometric Li1 + xCoO2 before and after delithiation according to XPS and DRS,” J. Power Sources 119–121, 669–673 (2003).

    Article  CAS  Google Scholar 

  88. P. Ghosh, S. Mahanty, M. W. Raja, R. N. Basu, and H. S. Maiti, “Structure and optical absorption of combustion-synthesized nanocrystalline LiCoO2,” J. Mater. Res. 22, 1162–1167 (2007).

    Article  CAS  Google Scholar 

  89. B. G. A. Freitas, J. M. Jr. Siqueira, L. M. Costa, G. B. Ferreira, and J.A.L.C. Resende, “Synthesis and characterization of LiCoO2 from different precursors by sol-gel method,” J. Brazil. Chem. Soc. 28, 2254–2266 (2017).

    CAS  Google Scholar 

  90. E. Z. Kurmaev, R. G. Wilks, A. Moewes, L. D. Finkelstein, S. N. Shamin, and J. Kuneš, “Oxygen X-ray emission and absorption spectra as a probe of the electronic structure of strongly correlated oxides,” Phys. Rev. B 77, 165127 (2008).

    Article  CAS  Google Scholar 

  91. J. Molenda, A. Stoklosa, and T. Bęk, “Modification in the electronic structure of cobalt bronze LixCoO2 and the resulting electrochemical properties,” Solid State Ionics 36, 53–58 (1989).

    Article  CAS  Google Scholar 

  92. K. Kushida and K. Kuriyama, “Mott-type hopping conduction in the ordered and disordered phases of LiCoO2,” Solid State Commun. 129, 525–528 (2004).

    Article  CAS  Google Scholar 

  93. D. G. Kellerman, V. R. Galakhov, A. S. Semenova, Ya. N. Blinovskov, and O. N. Leonidova, “Semiconductor-metal transition in defect lithium cobaltite,” Phys. Solid State 48, 548–556 (2006).

    Article  CAS  Google Scholar 

  94. L. A. Montoro, M. Abbate, and J. M. Rosolen, “Changes in the electronic structure of chemically deintercalated LiCoO2,” Electrochem. Solid State Lett. 3, 410–412 (2000).

    Article  CAS  Google Scholar 

  95. T. Matsushita, M. Mizumaki, N. Ikeda, M. Nakazawa, A. Agui, Y. Saitoh, T. Nakatani, A. Yoshigoe, and S. Nakamura, “X-ray absorption spectroscopy in NaCo2O4, LaCoO3, SrCoO3,” Surf. Rev. Lett. 9, 1327–1331 (2002).

    Article  CAS  Google Scholar 

  96. V. R. Galakhov, M. Neumann, and D. G. Kellerman, “Electronic structure of defective lithium cobaltites LixCoO2,” Appl. Phys. A 94, 497–500 (2009).

    Article  CAS  Google Scholar 

  97. W.-S. Yoon, K.-B. Kim, M. G. Kim, M.-K. Lee, and H.-J. Shin, “Oxygen contribution on Li-ion intercalation-deintercalation in LiAlyCo1 – yO2 investigated by O K-edge and Co L-edge X-ray absorption spectroscopy,” J. Phys. Chem. B 106, 2526–2532 (2002).

    Article  CAS  Google Scholar 

  98. T. Mizokawa, Y. Wakisaka, T. Sudayama, C. Iwai, K. Miyoshi, J. Takeuchi, H. Wadati, D. G. Hawthorn, T. Z. Regier, and G. A. Sawatzky, “Role of oxygen holes in \({\text{L}}{{{\text{i}}}_{x}}{\text{Co}}{{{\text{O}}}_{2}}\) revealed by soft X-ray spectroscopy,” Phys. Rev. Lett. 111, 056404 (2013).

    Article  CAS  Google Scholar 

  99. D. Ensling, G. Cherkashinin, S. Schmid, S. Bhuvaneswari, A. Thissen, and W. Jaegermann, “Nonrigid band behavior of the electronic structure of LiCoO2 thin film during electrochemical Li deintercalation,” Chem. Mater. 26, 3948–3956 (2014).

    Article  CAS  Google Scholar 

  100. V. V. Mesilov, V. R. Galakhov, A. S. Semenova, D. G. Kellerman, and L. V. Elokhina “X-ray spectra and specific features of the structure of lithium-sodium cobaltite LixNayCoO2,” Phys. Solid State 53, 271–275 (2011).

    Article  CAS  Google Scholar 

  101. F. M. F. De Groot, J. C. Fuggle, B. T. Thole, and G. A. Sawatzky, “2p X-ray absorption of 3d transition-metal compounds: An atomic multiplet description including the crystal field,” Phys. Rev. B 42, 5459–5468 (1990).

    Article  CAS  Google Scholar 

  102. V. V. Mesilov, V. R. Galakhov, B. A. Gizhevskii, A. S. Semenova, D. G. Kellerman, M. Raekers, and M. Neumann, “Charge states of cobalt ions in nanostructured lithium cobaltite: X-ray absorption and photoelectron spectra,” Phys. Solid State 55, 943–948 (2013).

    Article  CAS  Google Scholar 

  103. P. M. Raccah and J. B. Goodenough, “First-order localized-electron collective-electron transition in LaCoO3,” Phys. Rev. 155, 932–943 (1967).

    Article  CAS  Google Scholar 

  104. G. Jonker and J. V. Santen, “Magnetic compounds wtth perovskite structure III. Ferromagnetic compounds of cobalt,” Physica 19, 120–130 (1953).

    Article  CAS  Google Scholar 

  105. G. Thornton, B. Tofield, and D. Williams, “Spin state equilibria and the semiconductor to metal transition of LaCoO3,“ Solid State Commun. 44, 1213–1216 (1982).

    Article  CAS  Google Scholar 

  106. M. A. Korotin, S. Y. Ezhov, I. V. Solovyev, V. I. Anisimov, D. I. Khomskii, and G. A. Sawatzky, “Intermediate-spin state and properties of LaCoO3,” Phys. Rev. B 54, 5309–5316 (1996).

    Article  CAS  Google Scholar 

  107. J. Padilla-Pantoja, Doctoral Dissertation (Universitat Autònoma de Barcelona, Barcelona, 2015).

  108. I. A. Nekrasov, S. V. Streltsov, M. A. Korotin, and V. I. Anisimov, “The influence of the rare earth ions radii on the low spin to intermediate spin state transition in lanthanide cobaltite perovskites: LaCoO3 vs. HoCoO3,” Phys. Rev. B 63, 235113 (2003).

    Article  CAS  Google Scholar 

  109. K. Knížek, P. Novák, and Z. Jirák, “Spin state of LaCoO3: Dependence on CoO6 octahedra geometry,” Phys. Rev. B 71, 054420 (2005).

    Article  CAS  Google Scholar 

  110. S. Yamaguchi, Y. Okimoto, and Y. Tokura, “Local lattice distortion during the spin-state transition in LaCoO3,” Phys. Rev. B 55, R8666–R8669 (1997).

    Article  CAS  Google Scholar 

  111. P. G. Radaelli and S. -W. Cheong, “Structural phenomena associated with the spin-state transition in LaCoO3,” Phys. Rev. B 66, 094408 (2002).

    Article  CAS  Google Scholar 

  112. G. Maris, Y. Ren, V. Volotchaev, C. Zobel, T. Lorenz, and T. T. M. Palstra, “Evidence for orbital ordering in LaCoO3,” Phys. Rev. B 67, 224423 (2003).

    Article  CAS  Google Scholar 

  113. D. Phelan, S. Louca, S. Rosenkranz, S.-H. Lee, Y. Qiu, P. J. Chupas, R. Osborn, H. Zheng, J. F. Mitchell, J. R. D. Copley, J. L. Sarrao, and Y. Moritomo, “Nanomagnetic droplets and implications to orbital ordering in La1 – xSrxCoO3,” Phys. Rev. Lett. 96, 027201 (2006).

    Article  CAS  Google Scholar 

  114. G. Vankó, J. -P. Rueff, A. Mattila, Z. Németh, and A. Shukla, “Temperature- and pressure-induced spin-state transitions in LaCoO3,” Phys. Rev. B 73, 024424 (2006).

    Article  CAS  Google Scholar 

  115. R. F. Klie, J. C. Zheng, Y. Zhu, M. Varela, J. Wu, and C. Leighton, “Direct measurement of the low-temperature spin-state transition in LaCoO3,” Phys. Rev. Lett. 99, 047203 (2007).

    Article  CAS  Google Scholar 

  116. M. Zhuang, W. Zhang, and N. Ming, “Competition of various spin states of LaCoO3,” Phys. Rev. B 57, 10705 (1995).

    Article  Google Scholar 

  117. K. Knížek, J. Hejtmánek, and P. Novák, “Character of the excited state state of the Co3+ ion in LaCoO3,” J. Phys.: Condens. Matter 18, 3285–3297 (2006).

    Google Scholar 

  118. K. Knížek, J. Hejtmánek, Z. Jirák, P. Tomeš, P. Henry, and A. André, “Neutron diffraction and heat capacity studies of PrCoO3 and NdCoO3,” Phys. Rev. B 79, 134103 (2009).

    Article  CAS  Google Scholar 

  119. V. Křápek, P. Novák, J. Kuneš, D. Novoselov, D. M. Korotin, and V. I. Anisimov, “Spin state transition and covalent bonding in LaCoO3,” Phys. Rev. B 86, 195104 (2012).

    Article  CAS  Google Scholar 

  120. S. Noguchi, S. Kawamata, K. Okuda, H. Nojiri, and M. Motokawa, “Evidence for the excited triplet of Co3+ in LaCoO3,” Phys. Rev. B 66, 094404 (2002).

    Article  CAS  Google Scholar 

  121. A. Podlesnyak, S. Streule, J. Mesot, M. Medarde, E. Pomjakushina, K. Conder, A. Tanaka, M. W. Haverkort, and D. I. Khomskii, “Spin-state transition in LaCoO3: Direct neutron spectroscopic evidence of excited magnetic states,” Phys. Rev. Lett. 97, 247208 (2006).

    Article  CAS  Google Scholar 

  122. N. Sundaram, Y. Jiang, I. E. Anderson, D. P. Belanger, C. H. Booth, F. Bridges, J. F. Mitchell, T. Proffen, and H. Zheng, “Local structure of La1 – xSrxCoO3 determined from EXAFS and neutron pair distribution function studies,” Phys. Rev. Lett. 102, 026401 (2009).

    Article  CAS  Google Scholar 

  123. T. Vogt, J. A. Hriljac, N. C. Hyatt, and P. Woodward, “Pressure-induced intermediate-to-low spin state transition in LaCoO3,” Phys. Rev. B 67, 140401 (2003).

    Article  CAS  Google Scholar 

  124. Y. Tsujimoto, S. Nakano, N. Ishimatsu, M. Mizumaki, N. Kawamura, T. Kawakami, Y. Matsushita, and K. Yamaura, “Pressure-driven spin crossover involving polyhedral transformation in layered perovskite cobalt oxyfluoride,” Sci. Rep. 6, 36253 (2016).

    Article  CAS  Google Scholar 

  125. Y.-Y. Chin, H.-J. Lin, Z. Hu, C. Kuo, D. Mikhailova, J.-M. Lee, S.-C. Haw, S.-A. Chen, W. Schnelle, H. Ishii, N. Hiraoka, Y.-F. Liao, K.-D. Tsuei, A. Tanaka, L. H. Tjeng, C.-T. Chen, and J. M. Chen, “Relation between the Co–O bond lengths and the spin state of Co in layered cobaltates: A high-pressure study,” Sci. Rep. 7, 3656 (2017).

    Article  CAS  Google Scholar 

  126. D. Mikhailova, Z. Hu, C.-Y. Kuo, S. Oswald, K. M. Mogare, S. Agrestini, J.-F. Lee, C.-W. Pao, S.‑A. Chen, J.-M. Lee, S.-C. Haw, J.-M. Chen, Y.‑F. Liao, H. Ishii, K. -D. Tsuei, A. Senyshyn, and H. Ehrenberg, “Charge transfer and structural anomaly in stoichiometric layered perovskite Sr2Co0.5Ir0.5O4,” Eur. J. Inorg. Chem. 2017, 587–595 (2017).

    Article  CAS  Google Scholar 

  127. Y. Tsujimoto, J. J. Li, K. Yamaura, Y. Matsushita, Y. Katsuya, M. Tanaka, Y. Shirako, M. Akaogi, and E. Takayama-Muromachi, “New layered cobalt oxyfluoride, Sr2CoO3F,” Chem. Commun. 47, 3263–3265 (2011).

    Article  CAS  Google Scholar 

  128. Y. Tsujimoto, C. Sathish, K. Hong, K. Oka, M. Azuma, Y. Guo, Y. Matsushita, K. Yamaura, and E. Takayama-Muromachi, “Crystal structural, magnetic, and transport properties of layered cobalt oxyfluorides,” Sr2CoO3 + xF1 – x (\(0 \leqslant x \leqslant 0.15\)), Inorg. Chem. 51, 4802 (2012).

    Article  CAS  Google Scholar 

  129. N. McGlothlin, D. Ho, and R. J. Cava, “Sr3Co2O5Cl2 and Sr2CoO3Cl: two layered cobalt oxychlorides,” Mater. Res. Bull. 35, 1035–1043 (2000).

    Article  CAS  Google Scholar 

  130. Y. -Y. Chin, Z. Hu, Y. Su, Y. Tsujimoto, A. Tanaka, and C. -T. Chen, “Experimental and theoretical soft X-ray absorption study on Co3+ ion spin states in Sr2 ‒ xCaxCoO3F,” Phys. Status Solidi 12, 1800147 (2012).

    Article  CAS  Google Scholar 

  131. A. A. Belik, S. Iikubo, K. Kodama, N. Igawa, S. Shamoto, S. Niitaka, M. Azuma, Y. Shimakawa, M. Takano, F. Izumi, and E. Takayama-Muromachi, “Neutron powder diffraction study on the crystal and magnetic structures of BiCoO3,” Chem. Mater. 18, 798–803 (2006).

    Article  CAS  Google Scholar 

  132. K. Oka, M. Azuma, W. Chen, H. Yusa, A. A. Belik, E. Takayama-Muromachi, M. Mizumaki, N. Ishimatsu, N. Hiraoka, M. Tsujimoto, M. G. Tucker, J. P. Attfield, and Y. Shimakawa, “Pressure-induced spin-state transition in BiCoO3,” J. Am. Chem. Soc. 132, 9438–9443 (2010).

    Article  CAS  Google Scholar 

  133. Z. Hu, H. Wu, M. W. Haverkort, H. H. Hsieh, H. J. Lin, T. Lorenz, J. Baier, A. Reichl, I. Bonn, C. Felser, A. Tanaka, C. T. Chen, and L. H. Tjeng, “Different look at the spin state of Co3+ ions in a CoO5 pyramidal coordination,” Phys. Rev. Lett. 92, 207402 (2004).

    Article  CAS  Google Scholar 

  134. J. Baier, S. Jodlauk, M. Kriener, A. Reichl, C. Zobel, H. Kierspel, A. Freimuth, and T. Lorenz, “Spin-state transition and metal-insulator transition in La1 – xEuxCoO3,” Phys. Rev. B 71, 014443 (2005).

    Article  CAS  Google Scholar 

  135. G. Van der Laan, B. T. Thole, G. A. Sawatzky, and M. Verdaguer, “Multiplet structure in the \({{L}_{{2,3}}}\) X-ray-absorption spectra: A fingerprint for high- and low-spin Ni2+ compound,” Phys. Rev. B 37, 6587–6589 (1988).

    Article  CAS  Google Scholar 

  136. B. T. Thole and G. van der Laan, “Branching ratio in X-ray absorption spectroscopy,” Phys. Rev. B 38, 3158–3171 (1988).

    Article  CAS  Google Scholar 

  137. C. Cartier dit Moulin, P. Rudolf, A. M. Flank, and C. T. Chen, “Spin transition evidenced by soft X-ray absorption spectroscopy,” J. Phys. Chem. 96, 6196–6198 (1992).

  138. J. B. Goodenough, A. Wold, R. J. Arnott, and N. Menyuk, “Relationship between crystal symmetry and magnetic properties of ionic compounds containing Mn3+,” Phys. Rev. 124, 373–384 (1961).

    Article  CAS  Google Scholar 

  139. I. O. Troyanchuk, L. S. Lobanovsky, D. D. Khalyavin, S. N. Pastushonok, and H. Szymczak, “Magnetic and magnetotransport properties of Co-doped manganites with perovskite structure,” J. Magn. Magn. Mater. 210, 63–72 (2000).

    Article  CAS  Google Scholar 

  140. P. A. Joy, Y. B. Khollam, and S. K. Date, “Spin states of Mn and Co in LaMn0.5Co0.5O3,” Phys. Rev. B 62, 8608–8610 (2000).

    Article  CAS  Google Scholar 

  141. V. L. J. Joly, P. A. Joy, S. K. Date, and C. S. Gopinath, “The origin of ferromagnetism in the two different phases of LaMn0.5Co0.5O3: evidence from X-ray photoelectron spectroscopic studies,” J. Phys.: Condens. Matter 13, 649–656 (2001).

    CAS  Google Scholar 

  142. R. Mahendiran, M. Hervieu, B. Raveau, and P. Schiffer, “Giant frequency dependence of dynamic freezing in nanocrystalline ferromagnetic LaCo0.5Mn0.5O3,” Phys. Rev. B 68, 104402 (2001).

    Article  CAS  Google Scholar 

  143. R. I. Dass and J. B. Goodenough, “Multiple magnetic phases of La2CoMnO6 – δ (\(0 \leqslant \delta \leqslant 0.05\)),” Phys. Rev. B 67, 014401 (2003).

    Article  CAS  Google Scholar 

  144. J. -H. Park, S. -W. Cheong, and C. T. Chen, “Double-exchange ferromagnetism in Ln(Mn1 – xCox)O3,” Phys. Rev. B 55, 11072–11075 (1997).

    Article  CAS  Google Scholar 

  145. O. Toulemonde, F. Studer, A. M. A. Barnabe, C. Martin, and B. Raveau, “Charge states of transition metal in “Cr, Co and Ni” doped Ln0.5Ca0.5MnO3 CMR manganites,” Eur. Phys. J. B 4, 159–167 (1998).

    Article  CAS  Google Scholar 

  146. J. Van Elp, “Comment on “Double-exchange ferromagnetism in La(Mn1 – xCox)O3,” Phys. Rev. B 60, 7649–7650 (1999).

    Article  CAS  Google Scholar 

  147. M. Sikora, C. Kapusta, K. Knížek, Z. Jirák, C. Autret, M. Borowiec, C. J. Oates, V. Procházka, D. Rybicki, D. Zajac, “X-ray absorption near-edge spectroscopy study of Mn and Co valence states in LaMn1 – xCoxO3 (x = 0–1),” Phys. Rev. B 73, 094426 (2006).

    Article  CAS  Google Scholar 

  148. T. Burnus, Z. Hu, H. H. Hsieh, V. L. J. Joly, P. A. Joy, M. W. Haverkort, H. Wu, A. Tanaka, H.-J. Lin, C. T. Chen, and L. H. Tjeng, “Local electronic structure and magnetic properties of LaMn0.5Co0.5O3 studied by X-ray absorption and magnetic circular dichroism spectroscopy,” Phys. Rev. B 77, 125124 (2008).

    Article  CAS  Google Scholar 

  149. T. I. Chupakhina and G. V. Bazuev, “Synthesis, structure, and magnetic properties of Sr0.8Ce0.2Mn1 – yCoyO3 – δ (y = 0.3, 0.4),” Inorgan. Mater. 47, 1361–1366 (2011).

    Article  CAS  Google Scholar 

  150. H. Wu, K. Zhu, G. Xu, and H. Wang, “Magnetic inhomogeneities in electron-doped manganites Sr1 – xCexMnO3 (\(0.10 \leqslant x \leqslant 0.30\)),” Phys. B 407, 770–773 (2012).

    Article  CAS  Google Scholar 

  151. S. N. Shamin, V. V. Mesilov, M. S. Udintseva, A. V. Korolev, T. I. Chupakhina, G. V. Bazuev, and V. R. Galakhov, “X-ray absorption spectroscopy of Sr1 – xCexMn1 – yCoyO3 – δ solid solutions,” Curr. Appl. Phys. 16, 1597–1602 (2016).

    Article  Google Scholar 

  152. W. J. Lu, B. C. Zhao, R. Ang, W. H. Song, J. J. Du, and Y. P. Sun, “Internal friction evidence of uncorrelated magnetic clusters in electron-doped manganite Sr0.8Ce0.2MnO3,” Phys. Lett. 346, 321–326 (2005).

    Article  CAS  Google Scholar 

  153. A. Sundaresan, J. L. Tholence, A. Maignan, C. Martin, M. Hervieu, B. Raveau, and E. Suard, “Jahn-Teller distortion and magnetoresistance in electron doped Sr1 – xCexMnO3 (\(x = 0.1,0.2,0.3\) and 0.4),” Eur. Phys. J. B 14, 431–438 (2000).

    Article  CAS  Google Scholar 

  154. P. Mandal, A. Hassen, and A. Loidl, “Effect of Ce doping on structural, magnetic, and transport properties of SrMnO3 perovskite,” Phys. Rev. B 69, 224418 (2004).

    Article  CAS  Google Scholar 

  155. Z. Zhang, B. J. Kennedy, C. J. Howard, L. Y. Jang, K. S. Knight, M. Matsuda, and M. Miyake, “X-ray absorption and neutron diffraction studies of (Sr1 ‒ xCex)MnO3: transition from coherent to incoherent static Jahn–Teller distortions,” J. Phys.: Condens. Matter 22, 445401 (2010).

    Google Scholar 

  156. V. R. Galakhov, V. V. Mesilov, S. N. Shamin, B. A. Gizhevskii, N. A. Skorikov, S. V. Naumov, and O. Y. Vilkov, “X-ray spectra and valence states of cations in nanostructured half-doped La0.5Ca0.5MnO3 manganite,” Appl. Phys. A 118, 649–654 (2015).

    Article  CAS  Google Scholar 

  157. M. Sánchez, J. García, J. Blasco, G. Subías, and J. Perez-Cacho, “Local electronic and geometrical structure of LaNi1 – xMnxO3 + δ perovskites determined by X-ray-absorption spectroscopy,” Phys. Rev. B 65, 144409 (2002).

    Article  CAS  Google Scholar 

  158. A. Maignan, C. Martin, D. Pelloquin, N. Nguyen, and B. Raveau, “Structural and magnetic studies of ordered oxygen-deficient perovskites LnBaCo2O5 + δ, closely related to the “112” structure,” J. Solid State Chem. 142, 247–260 (1999).

    Article  CAS  Google Scholar 

  159. V. P. Plakhty, Y. P. Chernenkov, S. N. Barilo, A. Podlesnyak, E. Pomjakushina, E. V. Moskvin, and S. V. Gavrilov, “Spin structure and magnetic phase transitions in TbBaCo2O5.5,” Phys. Rev. B 71, 214407 (2005).

    Article  CAS  Google Scholar 

  160. S. Roy, I. S. Dubenko, M. Khan, E. M. Condon, J. Craig, N. Ali, W. Liu, and B. S. Mitchell, “Magnetic properties of perovskite-derived air-synthesized RBaCo2O5 + δ (R = La–Ho) compounds,” Phys. Rev. B 71, 024419 (2005).

    Article  CAS  Google Scholar 

  161. E. -L. Rautama and M. Karppinen, “R-site varied series of RBaCo2O5.5 (R2Ba2Co4O11) compounds with precisely controlled oxygen content,” J. Solid State Chem. 183, 1102–1107 (2010).

    Article  CAS  Google Scholar 

  162. S. V. Telegin, S. V. Naumov, O. G. Reznitskikh, and E. I. Patrakov, “Effect of cobalt deficiency on the structural phase transition in EuBaCo2 – xO6 – δ,” Phys. Solid State 57, 2990–2296 (2015).

    Article  CAS  Google Scholar 

  163. K. Conder, A. Podlesnyak, E. Pomjakushina, and M. Stingaciu, “Layered cobaltites: Synthesis, oxygen nonstoichiometry, transport and magnetic properties,” Acta Phys. Pol., A 111, 7–14 (2007).

    Article  CAS  Google Scholar 

  164. A. A. Taskin, A. N. Lavrov, and Y. Ando, “Transport and magnetic properties of GdBaCo2O5 + x single crystals: A cobalt oxide with square-lattice CoO2 planes over a wide range of electron and hole doping,” Phys. Rev. B 71, 134414 (2005).

    Article  CAS  Google Scholar 

  165. C. Frontera, J. L. García-Mu noz, A. Llobet, and M. A. G. Aranda, “Selective spin-state switch and metal–insulator transition in GdBaCo2O5.5,” Phys. Rev. B 65, 180405(R) (2002).

  166. D. D. Khalyavin, S. N. Barilo, S. V. Shiryaev, G. L. Bychkov, I. O. Troyanchuk, A. Furrer, P. Allenspach, H. Szymczak, and R. Szymczak, “Anisotropic magnetic, magnetoresistance, and electrotransport properties of GdBaCo2O5.5 single crystals,” Phys. Rev. B 67, 214421 (2003).

    Article  CAS  Google Scholar 

  167. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., Sect. A: Found. Adv. 32, 751–767 (1976).

    Google Scholar 

  168. C. Frontera, J. L. García-Mu noz, A. E. Carrillo, M. A. G. Aranda, I. Margiolaki, and A. Caneiro, “Spin state of Co3+ and magnetic transitions in RBaCo2O5.50 (R = Pr, Gd): Dependence on rare-earth size,” Phys. Rev. B 74, 054406 (2006).

    Article  CAS  Google Scholar 

  169. H. Kusuya, A. Machida, Y. Moritomo, K. Kato, E. Nishibori, M. Takata, M. Sakata, and A. Nakamura, “Structural change at metal–insulator transition of Tb2Ba2Co4O11,” J. Phys. Soc. Jpn. 70, 3577–3580 (2001).

    Article  CAS  Google Scholar 

  170. K. R. Zhdanov, M. Yu. Kameneva, L. P. Kozeeva, and A. N. Lavrov, “Spin transition and thermal expansion in the layered cobaltite GdBaCo2O5.5,” Phys. Solid State 52, 1688–1693 (2010).

    Article  CAS  Google Scholar 

  171. J. F. Mitchell, J. Burley, and S. Short, “Crystal and magnetic structure of NdBaCo2O5 + δ: Spin states in a perovskite-derived, mixed-valent cobaltite,” J. Appl. Phys. 93, 7364–7366 (2003).

    Article  CAS  Google Scholar 

  172. C. Martin, A. Maignan, D. Pelloquin, N. Nguyen, and B. Raveau, “Magnetoresistance in the oxygen deficient LnBaCo2O5.4 (Ln = Eu, Gd) phases,” Appl. Phys. Lett. 71, 1421–1423 (1997).

    Article  CAS  Google Scholar 

  173. Z. Hu, H. Wu, T. C. Koethe, S. N. Barilo, S. V. Shiryaev, G. L. Bychkov, C. Schussler-Langeheine, T. Lorenz, A. Tanaka, H. H. Hsieh, H.-J. Lin, C. T. Chen, N. B. Brookes, S. Agrestini, Y.-Y. Chin, M. Rotter, and L. H. Tjeng, “Spin-state order/disorder and metal–insulator transition in GdBaCo2O5.5: experimental determination of the underlying electronic structure,” New J. Phys. 14, 123025 (2012).

    Article  CAS  Google Scholar 

  174. M. Lafkioti, E. Goering, S. Gold, G. Schütz, S. N. Barilo, S. V. Shiryaev, G. L. Bychkov, P. Lemmens, V. Hinkov, J. Deisenhofer, and A. Loidl, “Spin state and orbital moments across the metal–insulator-transition of REBaCo2O5.5 investigated by XMCD,” New J. Phys. 10, 123030 (2008).

    Article  CAS  Google Scholar 

  175. A. A. Taskin and Y. Ando, “Electron-hole asymmetry in GdBaCo2O5 + x: Evidence for spin blockade of electron transport in a correlated electron system,” Phys. Rev. Lett. 95, 176603 (2005).

    Article  CAS  Google Scholar 

  176. A. Kumari, C. Dhanasekhar, and A. Das, “Spin state transitions associated with magnetic phase separation in EuBaCo2O5 + δ (\(\delta = 0.47\)) cobaltite,” J. Alloys Compd. 802, 409–414 (2019).

    Article  CAS  Google Scholar 

  177. Y. Moritomo, T. Akimoto, M. Takeo, A. Machida, E. Nishibori, M. Takata, M. Sakata, K. Ohoyama, and A. Nakamura, “Metal-insulator transition induced by a spin-state transition in TbBaCo2O5 + δ (\(\delta = 0.5\)),” Phys. Rev. B 61, R13325–R13328 (2000).

    Article  CAS  Google Scholar 

  178. N. I. Solin, S. V. Naumov, and S. V. Telegin, “Spin state of Co3+ ions in layered GdBaCo2O5.5 cobaltite in the paramagnetic phase,” JETP Lett. 107, 203–209 (2018).

    Article  CAS  Google Scholar 

  179. J. Padilla-Pantoja, C. Frontera, J. Herrero-Martın, and J. L. García-Mu noz, “Spin state and structural changes at the metal-insulator transition in YBaCo2O5.5 by synchrotron X-rays,” J. Appl. Phys. 111, 07D710 (2012).

  180. M. García-Fernández, V. Scagnoli, U. Staub, A. M. Mulders, M. Janousch, Y. Bodenthin, D. Meister, B. D. Patterson, A. Mirone, Y. Tanaka, T. Nakamura, S. Grenier, Y. Huang, and K. Conder, “Magnetic and electronic Co states in the layered cobaltate GdBaCo2O5.5 – x,” Phys. Rev. B 78, 054424 (2008).

    Article  CAS  Google Scholar 

  181. G. Aurelio, F. Bardelli, R. J. Prado, R. D. Sanchez, M. E. Saleta, and G. Garbarino, “On the location of host Ca atoms responsible for ferrimagnetism in the layered cobaltites YBaCo2O5.5,” Chem. Mater. 25, 3307–3314 (2013).

    Article  CAS  Google Scholar 

  182. S. Ganorkar, K. R. Priolkar, P. R. Sarode, and S. Emura, “X-ray spectroscopic and magnetic studies of RBaCo2O5.5, R = Pr, Nd, Sm, Gd and Y,” AIP Conf. Proc. 1728, 020050 (2016).

    Google Scholar 

  183. P. Miao, X. Lin, S. Lee, Y. Ishikawa, S. Torii, M. Yonemura, T. Ueno, N. Inami, K. Ono, Y. Wang, and T. Kamiyama, “Hole-doping-induced melting of spin-state ordering in PrBaCo2O5.5 + x,” Phys. Rev. B 95, 125123 (2017).

    Article  Google Scholar 

  184. V. V. Mesilov, M. S. Udintseva, S. N. Shamin, S. V.Naumov, S. V. Telegin, B. A. Gizhevskii, and V. R. Galakhov, “Determination of charge states of cobalt ions in nanostructured GdBaCo2O5.5 cobaltites by means of X-ray absorption spectroscopy,” Phys. Solid State 59, 829–834 (2017).

    Article  CAS  Google Scholar 

  185. V. R. Galakhov, M. S. Udintseva, V. V. Mesilov, B. A. Gizhevskii, S. V. Naumov, S. V. Telegin, and D. A. Smirnov, “Milling-induced chemical decomposition of the surface of EuBaCo2O5.5 powders studied by means of soft X-ray absorption spectroscopy,” Appl. Surf. Sci. 493, 1048–1054 (2019).

    Article  CAS  Google Scholar 

  186. V. R. Galakhov, B. A. Gizhevskii, S. V. Naumov, M. S. Udintseva, and V. V. Mesilov, “Effects of nonstoichiometry and plastic deformation on charge and spin states of cobalt ions in LnBaCo2O5.5 – δ (Ln = Tb, Eu): Soft X-ray absorption spectroscopy studies,” Phys. Met. Metallogr. 120, 112–116 (2019).

    Article  Google Scholar 

  187. S. V. Naumov, V. I. Voronin, I. F. Berger, M. S. Udintseva, V. V. Mesilov, B. A. Gizhevskii, S. V. Telegin, and V. R. Galakhov, “Effect of nonstoichiometry on crystal structure, charge and spin states of cobalt ions in Tb1 – yBa1 + yCo2 – xO5.5 – δ: Neutron diffraction and soft X-ray absorption spectroscopy studies,” J. Alloys Compd. 817, 152775 (2020).

    Article  CAS  Google Scholar 

  188. C. S. Knee, D. J. Price, M. R. Lees, and M. T. Weller, “Two- and three-dimensional magnetic order in the layered cobalt oxychloride Sr2CoO3Cl,” Phys. Rev. B 68, 174407 (2003).

    Article  CAS  Google Scholar 

  189. A. Tanaka and T. Jo, “Resonant 3d, 3p and 3s photoemission in transition metal oxides predicted at 2p threshold,” J. Phys. Soc. Jpn. 63, 2788–2807 (1994).

    Article  CAS  Google Scholar 

  190. W. Eberhardt, K. M. Colbow, Y. Gao, D. Rogers, and T. Tiedje, “Photon-stimulated desorption from CaF2 and BaF2 thin films grown epitaxially on GaAs(100) surfaces,” Phys. Rev. B 46, 12388–12393 (1992).

    Article  CAS  Google Scholar 

  191. S. Y. Istomin, O. A. Tyablikov, S. M. Kazakov, E. V. Antipov, A. I. Kurbakov, A. A. Tsirlin, N. Hollmann, Y. Y. Chin, H. -J. Lin, C. T. Chen, A. Tanaka, L. H. Tjeng, and Z. Hu, “An unusual high-spin ground state of Co3+ in octahedral coordination in brownmillerite-type cobalt oxide,” Dalton Trans. 44, 10708–10713 (2015).

    Article  CAS  Google Scholar 

  192. Y. Tong, Y. Guo, P. Chen, H. Liu, M. Zhang, L. Zhang, W. Yan, W. Chu, C. Wu, and X. Xie, “Spin-state regulation of perovskite cobaltite to realize enhanced oxygen evolution activity,” Chem. 3, 812–821 (2017).

    Article  CAS  Google Scholar 

  193. Y. Lu, A. Ma, Y. Yu, R. Tan, C. Liu, P. Zhang, D. Liu, and J. Gui, “Engineering oxygen vacancies into LaCoO3 perovskite for efficient electrocatalytic oxygen evolution,” ACS Sust. Chem. Eng. 7, 2906–2910 (2019).

    Article  CAS  Google Scholar 

  194. A. Tarancón, J. Peña-Martínez, D. Marrero-López, A. Morata, J. C. Ruiz-Morales, and P. Núñez, “Stability, chemical compatibility and electrochemical performance of GdBaCo2O5 + x layered perovskite as a cathode for intermediate temperature solid oxide fuel cells,” Solid State Ionics 179, 2372–2378 (2008).

    Article  CAS  Google Scholar 

  195. J. Druce, H. Téllez, M. Burriel, M. D. Sharp, L. J. Fawcett, S. N. Cook, D. S. McPhail, T. Ishihara, H. H. Brongersma, and J. A. Kilner, “Surface termination and subsurface restructuring of perovskite-based solid oxide electrode materials,” Energy Environ. Sci. 7, 3593–3599 (2014).

    Article  CAS  Google Scholar 

  196. L. Zhu, B. Wei, Z. Lu, J. Feng, L. Xu, H. Gao, Y. Zhang, and X. Huang, “Performance degradation of double-perovskite PrBaCo2O5 + δ oxygen electrode in CO2 containing atmospheres,” Appl. Surf. Sci. 416, 649–655 (2017).

    Article  CAS  Google Scholar 

  197. P. Manuel, L. C. Chapon, P. G. Radaelli, H. Zheng, and J. F. Mitchell, “Magnetic correlations in the extended Kagome YBaCo4O7 probed by single-crystal neutron scattering,” Phys. Rev. Lett. 103, 037202 (2009).

    Article  CAS  Google Scholar 

  198. M. Soda, Y. Yasui, T. Moyoshi, M. Sato, N. Igawa, and K. Kakurai, “Magnetic measurements and neutron studies on YBaCo4O7 and LuBaCo4O7,” J. Magn. Magn. Mater. 310, 441–442 (2007).

    Article  CAS  Google Scholar 

  199. W. Schweika, M. Valldor, and P. Lemmens, “Approaching the ground state of the Kagomé antiferromagnet,” Phys. Rev. Lett. 98, 067201 (2007).

    Article  CAS  Google Scholar 

  200. V. Caignaert, V. Pralong, V. Hardy, C. Ritter, and B. Raveau, “Magnetic structure of CaBaCo4O7: Lifting of geometrical frustration towards ferrimagnetism,” Phys. Rev. B 81, 094417 (2010).

    Article  CAS  Google Scholar 

  201. K. Singh, V. Caignaert, L. C. Chapon, V. Pralong, B. Raveau, and A. Maignan, “Spin-assisted ferroelectricity in ferrimagnetic CaBaCo4O7,” Phys. Rev. B 86, 024410 (2012).

    Article  CAS  Google Scholar 

  202. E. V. Tsipis, D. D. Khalyavin, S. V. Shiryaev, K. S. Redkina, and P. Nú Nez, “Electrical and magnetic properties of YBaCo4O7 – δ,” Mater. Chem. Phys. 92, 33–38 (2005).

    Article  CAS  Google Scholar 

  203. V. R. Galakhov, D. I. Turkin, V. V. Mesilov, S. N. Shamin, G. V. Bazuev, and K. Kuepper, “Effect of transition metal oxidation state on crystal structure and magnetic ordering in frustrated ABaM4O7 systems (A = Y, Ca; M = Co, Fe): X-ray diffraction, soft X-ray absorption, and magnetization studies,” Curr. Appl. Phys. 18, 155–162 (2018).

    Article  Google Scholar 

  204. M. Valldor, “Disordered magnetism in the homologue series YBaCo4 – xZnxO7 (x = 0, 1, 2, 3),” J. Phys.: Condens. Matter 16, 9209–9225 (2004).

    CAS  Google Scholar 

  205. D. I. Turkin, G. V. Bazuev, and A. V. Korolev, “Structural and magnetic investigations of CaBaCo4 – xFexO7 solid solutions,” J. Magn. Magn. Mater. 422, 66–72 (2017).

    Article  CAS  Google Scholar 

  206. M. Karppinen, H. Yamauchi, S. Otani, T. Fujita, T. Motohashi, Y.-H. Huang, M. Valkeapää, and H. Fjellvåg, “Oxygen nonstoichiometry in YBaCo4O7 + δ: Large low-temperature oxygen absorption/desorption capability,” Chem. Mater. 18, 490–494 (2006).

    Article  CAS  Google Scholar 

  207. H. Hao, L. Zhao, J. Hu, X. Hu, and H. Hou, “Oxygen adsorption/desorption behavior of YBaCo4O7 + δ and its application to oxygen removal from nitrogen,” J. Rare Earths 27, 815–818 (2009).

    Article  Google Scholar 

  208. S. Kadota, M. Karppinen, T. Motohashi, and H. Yamauchi, “R-site substitution effect on the oxygen-storage capability of RBaCo4O7 + δ,” Chem. Mater. 20, 6378–6381 (2008).

    Article  CAS  Google Scholar 

  209. V. R. Galakhov, S. N. Shamin, and V. V. Mesilov, “Soft X-Ray absorption spectroscopy as a method to study Y1 – yCayBaCo4 – xMxO7 cobaltites (M = Fe, Zn), JETP Lett. 107, 583–587 (2018).

    Article  CAS  Google Scholar 

  210. V. Cuartero, J. Blasco, G. Subías, J. García, J. A. Rodríguez-Velamazán, and C. Ritter, “Structural, magnetic, and electronic properties of CaBaCo4 – xMxO7 (M = Fe, Zn),” Inorg. Chem. 57, 3360–3370 (2018).

    Article  CAS  Google Scholar 

  211. D. I. Turkin and G. V. Bazuev, “Synthesis and magnetic properties of Y0.5Ca0.5Co4 – xZnxO7 solid solutions,” Inorganic Mater. 49, 726–732 (2013).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to his coauthors B.A. Gizhevskii, V.V. Mesilov, S.N. Shamin, N.A. Ovechkina, L.V. Elokhina, S.V. Naumov, M.S. Udintseva, V.I. Voronin, and E.Z. Kurmaev (the staff members of the Institute of Metal Physics, Ural Branch, Russian Academy of Sciences), and D.G. Kellerman, A.S. Semenova, G.V. Bazuev, D.I. Turkin, and T.I. Chupakhina (the staff members of the Institute of Solid State Chemistry) for their collaboration in performing the experiments described in this review. My special thanks to Dr. K. Kuepper and Prof. M. Neumann from the Universität Osnabrück (Germany).

Funding

The work was performed within the framework of State assignment from the Ministry of Education and Science of Russia (topic Electron, AAAA-A18-118020190098-5) and partially supported by the Russian Foundation for Basic Research (project no. 20-02-00461). The X-ray spectra were measured with partial financial support from Bilateral Program Russian-German Laboratory at BESSY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. R. Galakhov.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galakhov, V.R. X-Ray Spectroscopy of Cobaltites. Phys. Metals Metallogr. 122, 83–114 (2021). https://doi.org/10.1134/S0031918X21020046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X21020046

Keywords:

Navigation