Skip to main content
Log in

The Preservation of the Half-Metallicity during the Substitution of Manganese in \({\text{Ba}_{{1 - x}}}{\text{Mn}_{x}}\text{O}\) Alloy

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The object of this study is to investigate the half-metallicity, electronic structures and magnetic in the Ba1 – xMnxO compounds under the effect of substitution of Mn impurity at the different composition x = 0.25, 0.5, and 0.75 by the use of density functional theory (DFT) based first principle calculations. The half-metallic ferromagnetism is explained by analyzing the density of states. The ferromagnetic states configuration is originated from the 3d-eg (Mn) partially filled states associated with pd exchange mechanism. For the three concentrations, the total magnetic moment is integral member, which is mainly contributed by the magnetic moment Mn atom. We have found that Ba0.75Mn0.25O, Ba0.5Mn0. 5O and Ba0.25Mn0.75O compounds have direct half-metallic ferromagnetic gaps of 0.834, 0.58 and 0.368 eV, respectively, which decrease with increasing Mn concentration. Therefore, the Ba1 – xMnxO materials seem to be potential candidates for possible applications of semiconductor spintronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Z. Micković, EPFL Thesis no. 4728, “Study of diluted magnetic semiconductors: the case of transition metal doped ZnO” (2010). https://doi.org/10.5075/epfl-thesis-4728

  2. S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990).

    Article  CAS  Google Scholar 

  3. V. Ivády, I. A. Abrikosov, E. Janzén, and A. Gali, Phys. Rev. B 87, 205201 (2013).

    Article  Google Scholar 

  4. S. Methfessel and D. C. Mattis, in Magnetism, Magnetic Semiconductors, vol. XVIII/1 of Encyclopedia of Physics, 389562 (1968).

  5. M. L. Reed, N. A. El-Masry, H. H. Stadelmaier, M. K. Ritum, and M. J. Reed, Appl. Phys. Lett. 79, 3473 (2001).

    Article  CAS  Google Scholar 

  6. E. Sarigiannidou, F. Wilhelm, E. Monroy, R. M. Galera, E. Bellet-Amalric, A. Rogalev, J. Goulon, J. Cibert, and H. Mariette, Phys. Rev. B 74, 041306R (2006).

    Article  Google Scholar 

  7. T. Graf, M. Gjukic, M. S. Brandt, and M. Stutzmann, “The Mn3+=2+ acceptor level in group III nitrides,” Appl. Phys. Lett. 81, 5159 (2002).

    Article  CAS  Google Scholar 

  8. H. Lakhdari, J. Supercond. Nov. Magn. 31, No. 10 (2018).

  9. H. Bahloul, J. Supercond. Nov. Magn. 31, No. 12 (2018).

  10. D. Misra and S. K. Yadav, Sci. Rep. 9, 12593 (2019).

    Article  Google Scholar 

  11. W. H. Strewlow and E. L. Cook, J. Phys. Chem. Ref. Data 2, 163 (1973).

    Article  Google Scholar 

  12. X. Yang, Y. Wang, Y. Chen, and H. Yan, Acta Phys. Pol., A 126, 64 (2016).

    Article  Google Scholar 

  13. J. A. McLeod, R. G. Wilks, N. A. Skorikow, L. D. Finkelstein, M. Abu-Samak, E. Z. Kurmaev, and A. Moewes, Phys. Rev. B 81, 245123 (2010).

    Article  Google Scholar 

  14. J. Junquera, M. Zimmer, P. Ordejón, and P. Ghosez, Phys. Rev. B 67, 155327 (2003).

    Article  Google Scholar 

  15. J. Kuneš, A. Lukoyanov, V. Anisimov, R. T. Scalettar, and W. E. Pickett, Nat. Mater. 7, 198–202 (2008).

    Article  Google Scholar 

  16. J. E. Pask, D. J. Singh, I. I. Mazin, C. S. Hellberg, and J. Kortus, Phys. Rev. B 64, 024403

  17. V. Solovyev, Phys. Rev. B 58, 15496 (1998).

    Article  CAS  Google Scholar 

  18. M. D. Towler, N. L. Allan, N. M. Harrison, V. R. Saunders, W. C. Mackrodt, and E. Apra, Phys. Rev. B 50, 5041 (1994).

    Article  CAS  Google Scholar 

  19. S. Massidda, A. Continenza, M. Posternak, and A. Baldereschi, Phys. Rev. Lett. 74, 2323 (1995).

    Article  CAS  Google Scholar 

  20. Fujimori, N. Kimizuka, T. Akahane, T. Chiba, S. Kimura, F. Minami, K. Siratori, M. Taniguchi, S. Ogawa, and S. Suga, Phys. Rev. B 42, 7580 (1990).

    Article  CAS  Google Scholar 

  21. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).

    Article  CAS  Google Scholar 

  22. W. Kohn and L. J. Sham, Phys. Rev. 140, 1133–1138 (1965).

    Article  Google Scholar 

  23. Z. Wu and R. E. Cohen, Phys. Rev. B 73, 1–6 (2006).

    Google Scholar 

  24. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, An Augmented Plane Wave C Local Orbitals Program for Calculating Crystal Properties, Ed. by K. Schwarz (Technical Universitaet Wien, Wien, 2001).

    Google Scholar 

  25. P. Blaha, K. Schwarz, P. Sorantin, and S. B. Tricky, Comput. Phys. Commun. 59, 399 (1990).

    Article  CAS  Google Scholar 

  26. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz. WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Techn. Universitaet Wien, Wien, 2001).

    Google Scholar 

  27. K. Schwarz, P. Blaha, and G. K. H. Madsen, Comput. Phys. Commun. 147, 71 (2002).

    Article  Google Scholar 

  28. F. D. Muranghan, Proc. Natl. Acad. Sci. U.S.A. 30, 244 (1944).

    Article  Google Scholar 

  29. H. Lakhdari, B. Doumi, A. Mokaddem et al., J. Supercond. Nov. Magn. 32, 1781 (2019).

    Article  CAS  Google Scholar 

  30. K. L. Yao, G. Y. Gao, Z. L. Liu, and L. Zhu, Solid State Commun. 133, 301 (2005).

    Article  CAS  Google Scholar 

  31. Y. Gao, K. L. Yao, E. Şaşıoğlu, L. M. Sandratskii, Z. L. Liu, and J. L. Jiang, Phys. Rev. B 75, 174442 (2007).

    Article  Google Scholar 

  32. J. K. Furdyna, J. Appl. Phys. 64, R29 (1988).

    Article  CAS  Google Scholar 

  33. S. Sanvito, P. Ordejon, and N. A. Hill, Phys. Rev. B 63, 165206 (2001).

    Article  Google Scholar 

  34. H. Raebiger, A. Ayuela, and R. M. Nieminen, J. Phys.: Condens. Matter 16, L457 (2004).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Bensaid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaala, R., Bensaid, D., Doumi, B. et al. The Preservation of the Half-Metallicity during the Substitution of Manganese in \({\text{Ba}_{{1 - x}}}{\text{Mn}_{x}}\text{O}\) Alloy. Phys. Metals Metallogr. 122, 1272–1278 (2021). https://doi.org/10.1134/S0031918X20140057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X20140057

Keywords:

Navigation