Skip to main content
Log in

The Relationship between Cobalt Amount and Oxidation Parameters in NiTiCo Shape Memory Alloys

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Coating shape-memory alloys (SMAs) with a ceramic layer is an important way by which metallurgists change some physical properties and improve biocompatibilities of (SMAs) for some medical purposes. The oxidation behaviors of five NiTiCo samples with different compositions were investigated and their influence on the thermal characteristics of phase transformation temperatures was studied. The kinetic oxidation as a function of time was determined by using the results of measurements via a combined method of the thermal gravimetrical (TG) and differential thermal (DT) analysis (TG/DTA), at 1323 K for one hour. The SEM-EDX results showed that an oxidation layer covered the surface of the alloys with ceramic compounds consisting of titanium and oxygen. The phase transformation temperatures were increased with respect to non-oxidized NiTiCo alloys. Likewise, the enthalpy change during the heating process was affected by the oxidation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. T. W. Duerig, K. Melton, and D. Stöckel, Engineering Aspects of Shape Memory Alloys (Butterworth–Heinemann, 2013).

    Google Scholar 

  2. D. C. Lagoudas, Shape Memory Alloys: Modeling and Engineering Applications (Springer, Berlin, 2008).

    Google Scholar 

  3. J. M. Jani, M. Leary, A. Subic, and M. A.Gibson, “A review of shape memory alloy research, applications and opportunities,” Mater. Des. (1980–2015), 56, 1078–1113 (2014).

  4. W. M. Huang, Z. Ding, C.C. Wang, J. Wei, and H. Purnawali, “Shape memory materials,” Mater. Today 13, Nos. 7–8, 54–61 (2010).

    Article  CAS  Google Scholar 

  5. F. Dagdelen, M. A. K. Aldalawi, M. Kok, and I. N. Qader, “Influence of Ni addition and heat treatment on phase transformation temperatures and microstructures of a ternary CuAlCr alloy,” Eur. Phys. J. Plus 134, No. 2, 66 (2019).

    Article  Google Scholar 

  6. Yamauchi, K., et al., Shape memory and superelastic alloys: Applications and technologies (Elsevier, 2011)

    Book  Google Scholar 

  7. Ercan, E., F. Dagdelen, and I.N. Qader, “Effect of tantalum contents on transformation temperatures, thermal behaviors and microstructure of CuAlTa HTSMAs,” J. Therm. Anal. Calorimetry 139, 29–36 (2019).

    Article  Google Scholar 

  8. N. Pandis and C.P. Bourauel, “Nickel–Titanium (Ni–Ti) Arch wires: the clinical significance of super elasticity,” Seminars in Orthodontics 16, No. 4, 249–257 (2010).

    Article  Google Scholar 

  9. D. J. Fernandes, R.V. Peres, A. M. Mendes, and C. N. Elias, “Understanding the shape-memory alloys used in orthodontics,” ISRN dentistry, 2011, 132408 (2011).

    Google Scholar 

  10. C. W. Ngand and A. S. Mahmud, “Effect of surface oxidation on thermomechanical behavior of NiTi shape memory alloy wire,” in AIP Conf. Proc. (2017).

  11. A. R. Boccaccini, C. Peters, J. A. Roether, D. Eifler, S. K. Misra, and E. J. Minay, “Electrophoretic deposition of polyetheretherketone (PEEK) and PEEK/Bioglass® coatings on NiTi shape memory alloy wires,” J. Mater. Sci. 41, No. 24, 8152–8159 (2006).

    Article  CAS  Google Scholar 

  12. Jiang, H. and L. Rong, “Effect of hydroxyapatite coating on nickel release of the porous NiTi shape memory alloy fabricated by SHS method,” Surf. Coat. Technol. 201, Nos. 3–4, 1017–1021 (2006).

    Article  CAS  Google Scholar 

  13. Choi, J., et al., “Calcium phosphate coating of nickel–titanium shape-memory alloys. Coating procedure and adherence of leukocytes and platelets,” Biomaterials 24, No. 21, 3689–3696 (2003).

    Article  CAS  Google Scholar 

  14. F. Dagdelen and E. Ercan, “The surface oxidation behavior of Ni–45.16% Ti shape memory alloys at different temperatures,” J. Therm. Anal. Calorimetry 115, No. 1, 561–565 (2014).

    Article  CAS  Google Scholar 

  15. G. S. Firstov, R. G. Vitchev, H. Kumar, B. Blanpain, and J. Van Humbeeck, “Surface oxidation of NiTi shape memory alloy,” Biomaterials 23, No. 24, 4863–4871 (2002).

    Article  CAS  Google Scholar 

  16. M. Kök, G. Pirge, and Y. Aydoğdu, “Isothermal oxidation study on NiMnGa ferromagnetic shape memory alloy at 600–1000°C,” Appl. Surf. Sci. 268, 136–140 (2013).

  17. C. Chu, S. Wu, and Y. Yen, “Oxidation behavior of equiatomic TiNi alloy in high temperature air environment,” Mater. Sci. Eng., A 216, Nos. 1–2, 193–200 (1996).

    Article  Google Scholar 

  18. Y. Gu, Y. W. Gu, B. Y. Tay, C. S.Lim, and M. S. Yonga, “Characterization of bioactive surface oxidation layer on NiTi alloy,” Applied Surface Science, 252, No. 5, 2038–2049 (2005).

    Article  CAS  Google Scholar 

  19. Z. Li, S. Qian, and W. Wang, “Characterization and oxidation behavior of NiCoCrAlY coating fabricated by electrophoretic deposition and vacuum heat treatment,” Appl. Surf. Sci. 257, No. 10, 4616–4620 (2011).

    Article  CAS  Google Scholar 

  20. M. Kök and K. Yildiz, “Oxidation parameters determination of Cu–Al–Ni–Fe shape-memory alloy at high temperatures.,” Appl. Phys. A, 116, No. 4, 2045–2050 (2014).

    Article  Google Scholar 

  21. E. Acar, M. Kok, and I. Qader, “Exploring surface oxidation behavior of NiTi–V alloys,” Eur. Phys. J. Plus, 135, No. 1, 58 (2020).

    Article  CAS  Google Scholar 

  22. J. Otubo, O. D.Rigo, A. A.Coelho, C.M.Neto, and P.R.Mei, “The influence of carbon and oxygen content on the martensitic transformation temperatures and enthalpies of NiTi shape memory alloy,” Mater. Sci. Eng., A 481, 639–642 (2008).

  23. F. Dagdelen, M. Kok, and I. Qader, “Effects of Ta Content on Thermodynamic Properties and Transformation Temperatures of Shape Memory NiTi Alloy,”. Met. Materials Int. 25, 1420–1427 (2019).

    Article  CAS  Google Scholar 

  24. M. Kok, A. Al-Jaf, Z. Deniz Cirak, I. Nazem Quader, and E. Oner, “Effects of heat treatment temperatures on phase transformation, thermodynamical parameters, crystal microstructure, and electrical resistivity of NiTiV shape memory alloy,” J. Therm. Anal. Calorimetry 139, 3405–3413. (2020).

    Article  CAS  Google Scholar 

  25. C. Tatar, R. Acar, and I.N. Qader, “Investigation of thermodynamic and microstructural characteristics of NiTiCu shape memory alloys produced by arc-melting method,” Eur. Phys. J. Plus 135, 311 (2020).

  26. F. Dagdelen, E. Balci, I. N. Qader, E. Ozen, M. Kok, M. S. Kanca, S. S. Abdullah, and S. S. Mohammed, “Influence of the nb content on the microstructure and phase transformation properties of NiTiNb shape memory alloys,” JOM 72, 1664–1672 (2020).

    Article  CAS  Google Scholar 

  27. M. Kök, I. N. Qader, S. S. Mohammed, E. Oner, F. Dagbelen, and Y. Aydogdu., “Thermal stability and some thermodynamics analysis of heat treated quaternary CuAlNiTa shape memory alloy,” Mater. Res. Express 7 (2019).

  28. I. N. Qader, E. Ercan, B. A. Mohamme Faraj, M. Kok, F. Dagbelen, and Y. Aydogdu, “The Influence of time-dependent aging process on the thermodynamic parameters and microstructures of quaternary Cu79–Al12–Ni4–Nb5 (wt %) shape memory alloy,” Iran. J. Sci. Technol. No. 44, 903–910 (2020).

  29. I. N. Qader, M. Kök, and F. Dağdelen, “Effect of heat treatment on thermodynamics parameters, crystal and microstructure of (Cu–Al–Ni–Hf) shape memory alloy,” Phys. B: Condens. Matter", 553, 1–5 (2019).

  30. X. Zu, C. F. Zhang, S. Zhu, and Y. Huo, “Electron-irradiation-induced changes of martensitic transformation characteristics in TiNi shape memory alloys,” MRS Online Proc. Library Archive 57, 2099–2103 (2003).

    CAS  Google Scholar 

  31. M. Kök, H. Shahab Ahmed Zardawi, I. Nazem Qader, and M. Sait Kanca, “The effects of cobalt elements addition on Ti2Ni phases, thermodynamics parameters, crystal structure and transformation temperature of NiTi shape memory alloys,” Eur. Phys. J. Plus 134, No. 5, 197 (2019).

    Article  Google Scholar 

  32. M. Kök, “Investigation of thermal properties, chemical analysis and biocompatibility of high temperature oxidized NiTiMn shape memory alloy,” J. Phys. Chem. Funct. Mater. 1, No. 2, 25–35.

Download references

Funding

This work was supported by the Management Unit of the Scientific Research Projects of Firat University (FUBAP) (project no. FF.20.06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Qader.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammed, S.S., Kök, M., Çirak, Z.D. et al. The Relationship between Cobalt Amount and Oxidation Parameters in NiTiCo Shape Memory Alloys. Phys. Metals Metallogr. 121, 1411–1417 (2020). https://doi.org/10.1134/S0031918X2013013X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X2013013X

Keywords:

Navigation