Skip to main content
Log in

Single- and Multistage Crystallization of Amorphous Alloys

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

A thermodynamic approach to the description of single- and multistage crystallization of iron- and aluminum-based amorphous alloys is suggested in this work. The adequacy of theoretical calculation of the volume fraction of the crystalline phase to experimental data is demonstrated for the case of precipitation of one or several phases in disordered systems. The parameters of the model depend on the rate of heating of amorphous alloy. In the case of multistage crystallization, the theoretical calculations indicate the occurrence of thermal processes in the system, which affect the crystallite growth. These processes are the decelerated growth of crystallites of the same phase; enrichment of the amorphous matrix in alloy components, which do not crystallize, as a result of thermal diffusion; overlapping thermal effects of different processes; etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J. Christian, The Theory of Transformations in Metals and Alloys. Part 1: Equilibrium and General Kinetic Theory (Pergamon, Oxford, 1975; Mir, Moscow, 1978).

  2. O. V. Mazurin, Vitrification (Nauka, Leningrad, 1986) [in Russian].

    Google Scholar 

  3. 3. I. V. Zolotukhin and Yu. E. Kalinin, “Amorphous metallic alloys,” Sov. Phys. Usp. 33, 720–738 (1990).

    Article  Google Scholar 

  4. A. M. Gleizer and B. V. Molotilov, Structure and Mechanical Properties of Amorphous Alloys (Metallurgiya, Moscow, 1992) [in Russian].

    Google Scholar 

  5. G. Abrosimova, A. Aronin, O. Barkalov, D. Matveev, O. Rybchenko, V. Maslov, and V. Tkach, “Structural transformations in the Al85Ni6.1Co2Gd6Si0.9 amorphous alloy during multiple rolling,” Phys. Solid State 53, 229–233 (2011).

    Article  CAS  Google Scholar 

  6. Yu. N. Goikhenberg, V. E. Roshchin, and S. I. Il’in, “The structure and magnetic properties of amorphous alloys depending on the degree of crystallization,” Vestnik YuUrGU, No. 14, 24–28 (2011).

    Google Scholar 

  7. A. N. Kolmogorov, “On the statistic theory of crystallization of metals,” Izv. Akad. Nauk SSSR, Ser. Matem. 1 (3), 355–359 (1937).

    Google Scholar 

  8. W. A. Johnson and R. E. Mehl, “Reaction kinetics in processes of nucleation and growth,” Trans. Amer. Inst. Min. Met. 135, 416–458 (1939).

    Google Scholar 

  9. M. Avrami, “Kinetic of phase change. I. General theory,” J. Chem. Phys. 7, 1103–1112 (1939). https://doi.org/10.1063/1.1750380

    Article  CAS  Google Scholar 

  10. V. I. Tkach, T. N. Moiseeva, V. V. Popov, and V. Yu. Kameneva, “Kinetics and Mechanism of Crystallization of the Fe84B16 Amorphous Alloy,” Phys. Met. Metallogr. 91, 53–59 (2001).

    Google Scholar 

  11. V. I. Tkach, S. G. Rassolov, T. N. Moiseeva, and V. V. Popov, “Experimental studies and analytical description of two-stage crystallization of the Fe85B15 amorphous alloy,” Phys. Met. Metallogr. 104, 478–485 (2007).

    Article  Google Scholar 

  12. S. G. Rassolov, E. A. Sviridova, V. V. Maksimov, V. K. Nosenko, I. V. Zhikharev, D. V. Matveev, E. A. Pershina, and V. I. Tkach, “Thermal stability, kinetics, and mechanisms of decomposition of nanocomposite structures in alloys based on aluminium,” Metallofiz. Nov. Tekhnol. 37, 1089–1111 (2015).

    Article  CAS  Google Scholar 

  13. V. K. Nosenko, E. A. Segida, A. A. Nazarenko, V. V. Maksimov, E. A. Sviridova, and S. A. Kostyrya, “The effect of yttrium content on thermal stability and nanocrystallization processes of Al86Ni6Co2Gd6 – xYx and Al86Ni2Co6Gd6 – xYx amorphous alloys,” Metallofiz. Nov. Tekhnol. 11, 57–71 (2013).

    CAS  Google Scholar 

  14. O. V. Kovalenko and S. G. Rassolov, “Kinetics of the crystallization of the Fe40Ni40P14B6 amorphous alloy in a wide range of heating rates,” Fiz. Tekh. Vys. Davlenii 28(1), 76–86 (2018).

    CAS  Google Scholar 

  15. S. V. Vasiliev, V. I. Tkatch, A. S. Aronin, O. V. Kovalenko, and S. G. Rassolov, “Analysis of the transient behavior of nucleation in the Fe40Ni40P14B6 glass,” J. Alloys Compd. 744, 141–145 (2018).

    Article  CAS  Google Scholar 

  16. S. V. Vasiliev, O. V. Kovalenko, K. A. Svyrydova, A. I. Limanovskii, V. I. Tkatch, “Crystallization kinetics of the Fe40Ni40P14B6 metallic glass in an extended range of heating rates,” J. Mater. Sci. 54, 5788–5801 (2019).

    Article  CAS  Google Scholar 

  17. B. N. Rolov, “Studies of the relations of diffuse phase transitions,” In Diffuse Phase Transitions. Scientific notes 138. No. 1., Scientific Notes 138, No. 1 (Izd-vo RGU im. P. Stuchki, Riga, 1970), pp. 3–12.

  18. I. A. Kvasnikov, Thermodynamics and Statistical Physics. Vol. 1. Theory of Non-Equilibrium Systems: Thermodynamics (Editorial URSS, Moscow, 2002) [in Russian].

  19. B. N. Rolov and Yu. V. Yurkevich, Physics of Diffuse Phase Transitions (RGU, Rostov-on-Don, 1983) [in Russian].

    Google Scholar 

  20. S. A. Aliev, Diffuse Phase Transitions in Semiconductors and High-Temperature Superconductors (Elm, Baku, 2007) [in Russian].

  21. T. V. Tropin, V. L. Aksenov, and J. W. Schmelzer, “Modern aspects of the kinetic theory of glass transition,” Phys.–Usp. 59, 42–66 (2016).

    Article  Google Scholar 

  22. P. E. L’vov and V. V. Svetukhin, “Simulation of the decomposition of binary alloys on the basis of the free energy density functional method,” Phys. Solid State 59, 355–361 (2017).

    Article  Google Scholar 

  23. P. E. L’vov and V. V. Svetukhin, “Influence of grain boundaries on the distribution of components in binary alloys,” Phys. Solid State 59, 2453–2463 (2017).

    Article  Google Scholar 

  24. S. V. Terekhov, “Thermodynamic model of diffused phase transition in Fe40Ni40P14B6 metal glass,” Fiz. Tekh. Vys. Davlenii 28, 54–61 (2018).

    CAS  Google Scholar 

  25. S. V. Terekhov and A. I. Limanovskii, “”Void phase” and diffuse phase transition,” Fiz. Tekh. Vys. Davlenii 28, 65–74 (2018).

    Google Scholar 

  26. S. V. Terekhov, “Diffuse phase transition in the metallic glass Fe40Ni40P14B6: Thermodynamics and kinetics of the crystallization phase,” Fiz. Tekh. Vys. Davlenii 29(2), 24–39 (2019).

    CAS  Google Scholar 

  27. S. V. Terekhov, Simulation of Thermal and Kinetic Properties of Real Systems (Veber, Donetsk, 2007) [in Russian].

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We cordially thank Dr. V.I. Tkach for the body of given experimental data, the fruitful discussion of the manuscript, and critical remarks which led to significant improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Terekhov.

Additional information

Translated by N. Kolchugina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terekhov, S.V. Single- and Multistage Crystallization of Amorphous Alloys. Phys. Metals Metallogr. 121, 664–669 (2020). https://doi.org/10.1134/S0031918X20070108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X20070108

Keywords:

Navigation