Skip to main content
Log in

Magnetization Induced in a Superconductor Due to the Effect of Proximity with a Ferromagnetic Dielectric

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

This work investigates the magnetization of a superconductor induced by the proximity effect in bilayers containing a superconductor and a ferromagnetic insulator using the Green’s functions method. The simulation was carried out using the quasi-classical approximation; the Usadel equations were solved using boundary conditions specially developed for strongly ferromagnetic materials. The suppression of the superconducting order parameter as a result of the effect of the proximity to the ferromagnetic insulator has also been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. I. Žutić, J. Fabian, and S. Das Sarma, “Spintronics: Fundamentals and applications,” Rev. Mod. Phys. 76, 323–410 (2004).

    Article  Google Scholar 

  2. J. Linder and J. W. A. Robinson, “Superconducting spintronics,” Nat. Phys. 11, 307–315 (2015).

    Article  CAS  Google Scholar 

  3. M. G. Blamire and J. W. A. Robinson, “The interface between superconductivity and magnetism: Understanding and device prospects,” J. Phys.: Condens. Matter. 26, 453201 (2014).

    CAS  Google Scholar 

  4. A. I. Buzdin, “Proximity effects in superconductor–ferromagnet heterostructures,” Rev. Mod. Phys. 77, 935–976 (2005).

    Article  CAS  Google Scholar 

  5. M. Eschrig, “Spin-polarized supercurrents for spintronics: A review of current progress,” Rep. Prog. Phys. 78, 104501 (2015).

    Article  Google Scholar 

  6. D. M. Heim, N. G. Pugach, M. Y. Kupriyanov, E. Goldobin, D. Koelle, and R. Kleiner, “Ferromagnetic planar Josephson junction with transparent interfaces: A φ junction proposal,” J. Phys.: Condens. Matter. 25, 215701 (2013).

    CAS  Google Scholar 

  7. A. V. Vedyayev, N. V. Ryzhanova, and N. G. Pugach, “Critical current oscillations in S/F heterostructures in the presence of s–d scattering,” J. Magn. Magn. Mater. 305, 53–56 (2006).

    Article  CAS  Google Scholar 

  8. A. Vedyayev, C. Lacroix, N. Pugach, and N. Ryzhanova, “Spin-valve magnetic sandwich in a Josephson junction,” Europhys. Lett. 71, 679–685 (2005).

    Article  CAS  Google Scholar 

  9. F. S. Bergeret, A. F. Volkov, and K. B. Efetov, “Odd triplet superconductivity and related phenomena in superconductor–ferromagnet structures,” Rev. Mod. Phys. 77, 1321–1373 (2005).

    Article  CAS  Google Scholar 

  10. N. G. Pugach, M. Safonchik, T. Champel, M. E. Zhitomirsky, E. Lähderanta, M. Eschrig, and C. Lacroix, “Superconducting spin valves controlled by spiral re-orientation in B20-family magnets,” Appl. Phys. Lett. 111, 162601 (2017).

    Article  Google Scholar 

  11. N. Klenov, V. Kornev, A. Vedyayev, N. Ryzhanova, N. Pugach, and T. Rumyantseva, “Examination of logic operations with silent phase qubit,” J. Phys.: Conf. Ser. 97, 012037 (2008).

    Google Scholar 

  12. F. S. Bergeret, A. F. Volkov, and K. B. Efetov, “Induced ferromagnetism due to superconductivity in superconductor–ferromagnet structures,” Phys. Rev. B 69, 174504 (2004).

    Article  Google Scholar 

  13. J. Linder, T. Yokoyama, and A. Sudbø, “Theory of superconducting and magnetic proximity effect in S/F structures with inhomogeneous magnetization textures and spin-active interfaces,” Phys. Rev. B 79, 054523 (2009).

    Article  Google Scholar 

  14. T. Champel and M. Eschrig, “Effect of an inhomogeneous exchange field on the proximity effect in disordered superconductor–ferromagnet hybrid structures,” Phys. Rev. B 72, 054523 (2005).

    Article  Google Scholar 

  15. N. G. Pugach and A. I. Buzdin, “Magnetic moment manipulation by triplet Josephson current,” Appl. Phys. Lett. 101, 242602 (2012).

    Article  Google Scholar 

  16. Y. N. Khaydukov, V. L. Aksenov, Y. Nikitenko, K. N. Zhernenkov, B. Nagy, A. Teichert, R. Steitz, A. Rühm, and L. Bottyán, “Magnetic proximity effects in V/Fe superconductor/ferromagnet single bilayer revealed by waveguide-enhanced polarized neutron reflectometry,” J. Supercond. Novel. Magn. 24, 961–968 (2011).

    Article  CAS  Google Scholar 

  17. R. I. Salikhov, N. N. Garif’yanov, I. A. Garifullin, L. R. Tagirov, K. Westerholt, and H. Zabel, “Spin screening effect in superconductor/ferromagnet thin film heterostructures studied using nuclear magnetic resonance,” Phys. Rev. B 80, 214523 (2009).

    Article  Google Scholar 

  18. X. Hao, J. S. Moodera, and R. Meservey, “Thin-film superconductor in an exchange field,” Phys. Rev. Lett. 67, 1342–1345 (1991).

    Article  CAS  Google Scholar 

  19. J. A. Ouassou, A. Pal, M. Blamire, M. Eschrig, and J. Linder, “Triplet Cooper pairs induced in diffusive s‑wave superconductors interfaced with strongly spin-polarized magnetic insulators or half-metallic ferromagnets,” Sci. Rep. 7, No. 1, 1932 (2017).

    Article  Google Scholar 

  20. F. Giazotto, P. Solinas, A. Braggio, and F. S. Bergeret, “Ferromagnetic-insulator-based superconducting junctions as sensitive electron thermometers,” Phys. Rev. Appl. 4, 044016 (2015).

    Article  Google Scholar 

  21. M. J. Wolf, C. Sürgers, G. Fischer, and D. Beckmann, “Spin-polarized quasiparticle transport in exchange-split superconducting aluminum on europium sulfide,” Phys. Rev. B 90, 144509 (2014).

    Article  Google Scholar 

  22. A. Pal and M. G. Blamire, “Large interfacial exchange fields in a thick superconducting film coupled to a spin-filter tunnel barrier,” Phys. Rev. B 92, 180510 (2015).

    Article  Google Scholar 

  23. B. Li, N. Roschewsky, B. A. Assaf, M. Eich, M. Epstein-Martin, D. Heiman, M. Münzenberg, and J. S. Moodera, “Superconducting spin switch with infinite magnetoresistance induced by an internal exchange field,” Phys. Rev. Lett. 110, 097001 (2013).

    Article  Google Scholar 

  24. M. Eschrig, A. Cottet, W. Belzig, and J. Linder, “General boundary conditions for quasiclassical theory of superconductivity in the diffusive limit: Application to strongly spin-polarized systems,” New J. Phys. 17, 083037 (2015).

    Article  Google Scholar 

  25. J. Linder, A. Sudbø, T. Yokoyama, R. Grein, and M. Eschrig, “Signature of odd-frequency pairing correlations induced by a magnetic interface,” Phys. Rev. B 81, 214504 (2010).

    Article  Google Scholar 

  26. T. Champel and M. Eschrig, “Switching superconductivity in superconductor/ferromagnet bilayers by multiple-domain structures,” Phys. Rev. B: Condens. Matter Mater. Phys. 71, 220506 (2005).

    Article  Google Scholar 

  27. S. Mironov, A. S. Mel’nikov, and A. Buzdin, “Electromagnetic proximity effect in planar superconductor–ferromagnet structures,” Appl. Phys. Lett. 113, 022601 (2018).

    Article  Google Scholar 

  28. M. G. Flokstra, T. C. Cunningham, J. Kim, N. Satchell, G. Burnell, P. J. Curran, S. J. Bending, C. J. Kinane, J. F. K. Cooper, S. Langridge, A. Isidori, N. Pugach, M. Eschrig, and S. L. Lee, “Controlled suppression of superconductivity by the generation of polarized Cooper pairs in spin-valve structures,” Phys. Rev. B: Condens. Matter Mater. Phys. 91, 060501 (2015).

    Article  Google Scholar 

  29. T. T. Heikkilä, R. Ojajärvi, I. J. Maasilta, E. Strambini, F. Giazotto, and F. S. Bergeret, “Thermoelectric radiation detector based on superconductor-ferromagnet systems,” Phys. Rev. Appl. 10, 034053 (2018).

    Article  Google Scholar 

  30. F. Giazotto, J. W. A. Robinson, J. S. Moodera, and F. S. Bergeret, “Proposal for a phase-coherent thermoelectric transistor,” Appl. Phys. Lett. 105, 062602 (2014).

Download references

Funding

This article was prepared in the course of the study (project No. 19-04-030) “Exchange interactions in low-size quantum magnetic systems” in the framework of the Program “Scientific Foundation of the National Research University “Higher School of Economics” (NIU VShE)” in 2018–2019 and was supported in part by the grant for the leading universities of the Russian Federation “5-100.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Pugach.

Additional information

Translated by S. Gorin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yagovtsev, V.O., Pugach, N.G. Magnetization Induced in a Superconductor Due to the Effect of Proximity with a Ferromagnetic Dielectric. Phys. Metals Metallogr. 121, 242–247 (2020). https://doi.org/10.1134/S0031918X20030084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X20030084

Keywords:

Navigation