Skip to main content
Log in

Magnetic Materials for Thin Film Based Magnetoimpedance Biosensing

  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

One of the fundamental characteristics of a magnetic field detector is sensitivity to the external magnetic field. Of all the known magnetic effects, the giant magnetoimpedance (MI) has the highest sensitivity with respect to the external magnetic field. Here, we describe our experience in designing, fabrication, experimental and theoretical characterization of [FeNi(50 nm)/Ti(6 nm)]6/Cu(500 nm)/[Ti(50 nm)/FeNi(6 nm)]6 multilayered structures for biometric detector. The designed device operates at room temperature, with a maximum sensitivity of the order of 0.4 Ohm/Oe for the total impedance and its real part and 0.1 Ohm/Oe for the imaginary part of the total impedance. An automatic system based on a ZVA-67 (Rohde & Schwarz) vector network analyzer was built for one-scan microwave absorption studies of both magnetoimpedance and ferromagnetic resonance of multilayered sensitive elements. Measurements were made with the coplanar line type holder in the increasing and decreasing fields. The obtained experimental and theoretical results for MI range were in a satisfactory agreement with each other. They could be useful for optimization of the MI multilayered elements for practical applications, including applications in different types of magnetic biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. N. J. Darton, A. Ionescu, and J. Llandro (Eds.), Magnetic Nanoparticles in Biosensing and Medicine (Cambridge University Press, Cambridge, UK, 2019).

    Google Scholar 

  2. Q. A. Pankhurst, J. Connolly, S. K. Jones, and J. Dobson, “Applications of magnetic nanoparticles in biomedicine,” J. Phys. D: Appl. Phys. 36, R167–R181 (2003).

    Article  CAS  Google Scholar 

  3. G. V. Kurlyandskaya and V. I. Levit, “Advanced materials for drug delivery and biosensors based on magnetic label detection,” Mater. Sci. Eng., C 27, 495–503 (2007).

    Article  CAS  Google Scholar 

  4. C. Ruan, K. Zeng, O. K. Varghese, and C. A. Grimes, “Magnetoelastic immunosensors: Amplified mass immunosorbent assay for detection of Escherichia coli O157:H7,” Anal. Chem. 75, 6494–6498 (2003).

    Article  CAS  Google Scholar 

  5. G. V. Kurlyandskaya and V. F. Miyar, “Surface modified amorphous ribbon based magnetoimpedance biosensor,” Biosens. Bioelectron 22, 2341–2345 (2007).

    Article  CAS  Google Scholar 

  6. V. E. Makhotkin, B. P. Shurukhin, V. A. Lopatin, P. Y. Marchukov, and Y. K. Levin, “Magnetic field sensors based on amorphous ribbons,” Sens. Act. A 759, 759–762 (1991).

    Article  Google Scholar 

  7. A. S. Antonov, S. N. Gadetskii, A. B. Granovskii, A. L. D’yachkov, V. P. Paramonov, N. S. Perov, A. F. Prokoshin, N. A. Usov, and A. N. Lagar’kov, “Giant magnetoimpedance in amorphous and nanocrystalline multilayers,” Phys. Met. Metallogr. 83, 612–618 (1997).

    Google Scholar 

  8. K. Mohri, T. Uchiyama, L. P. Shen, C. M. Cai, and L. V. Panina, “Sensitive micro magnetic sensor family utilizing magneto-impedance (MI) and stress-impedance (SI) effects for intelligent measurements and controls,” Sens. Act. A 91, 85–90 (2001).

    Article  CAS  Google Scholar 

  9. R. S. Beach and A. E. Berkowitz, “Giant magnetic field dependent impedance of amorphous FeCoSiB wire,”Appl. Phys. Lett. 64, 3652–3654 (1994).

    Article  CAS  Google Scholar 

  10. T. Uchiyama, S. Nakayama, K. Mohri, and K. Bushida, “Biomagneticfield detection using very highsensitivity magneto-impedance sensors for medical applications,” Phys. Status Solidi 206, 639–643 (2009).

    Article  CAS  Google Scholar 

  11. N. A. Buznikov, A. P. Safronov, I. Orue, E. V. Golubeva, V. N. Lepalovskij, A. V. Svalov, A. A. Chlenova, and G. V. Kurlyandskaya, “Modelling of magnetoimpedance responce of thin film sensitive element in the presence of ferrogel: Next step toward development of biosensor for in-tissue embedded magnetic nanoparticles detection,” Biosens. Bioelectron. 117, 366–372 (2018).

    Article  CAS  Google Scholar 

  12. Y. Sugita, H. Fujiwara, and T. Sato, “Critical thickness and perpendicular anisotropy of evaporated permalloy films with stripe domains,” Appl. Phys. Lett. 10, 229–231 (1967).

    Article  CAS  Google Scholar 

  13. A. V. Svalov, G. V. Kurlyandskaya, H. Hammer, P. A. Savin, and O. I. Tutynina, “Modification of the “Transcritical” state in Ni75Fe16Cu5Mo4 films produced by rf sputtering,” Tech. Phys. 49, 868–871 (2004).

    Article  CAS  Google Scholar 

  14. G. V. Kurlyandskaya, L. Elbaile, F. Alves, B. Ahamada, R. Barrué, A. V. Svalov, and V. O. Vas’kovskiy, “Domain structure and magnetization process of a giant magnetoimpedance geometry FeNi/Cu/FeNi(Cu)FeNi/Cu/FeNi sensitive element,” J. Phys.: Condens. Matter 16, 6561–6568 (2004).

    CAS  Google Scholar 

  15. M. A. Correa, F. Bohn, C. Chesman, R. B. da Silva, A. D. C. Viegas, and R. L. Sommer, “Tailoring the magnetoimpedance effect of NiFe/Ag multilayer,” J. Phys. D: Appl. Phys. 107,43, 295004 (2010).

    Article  CAS  Google Scholar 

  16. G. V. Kurlyandskaya, A. V. Svalov, E. Fernández, A. García-Arribas, and J. M. Barandiarán, “FeNi-based magnetic layered nanostructures: Magnetic properties and giant magnetoimpedance,” J. Appl. Phys. 107, 09C502 (2010).

    Article  CAS  Google Scholar 

  17. N. A. Buznikov and G. V. Kurlyandskaya, “Magnetoimpedance in symmetric and non-symmetric nanostructured multilayers: A theoretical study,” Sensors 19, 1761 (2019).

    Article  CAS  Google Scholar 

  18. J. M. González, A. García-Arribas, S. V. Shcherbinin, V. N. Lepalovskij, J. M. Collantes, and G. V. Kurlyandskaya, “Broadband ferromagnetic resonance measurements in thin-film structures for magnetoimpedance sensors,” Measurement 126, 215–222 (2018).

    Article  Google Scholar 

  19. V. O. Vas’kovskii, P. A. Savin, S. O. Volchkov, V. N. Lepalovskii, D. A. Bukreev, and A. A. Buchkevich, “Nanostructuring effects in soft magnetic films and film elements with magnetic impedance,” Tech. Phys. 58, 105–110 (2013).

    Article  CAS  Google Scholar 

  20. P. R. Kern, O. E. da Silva, J, V. de Siqueira, R. D. Della Pace, J. N. Rigue, and M. Carara, “A study of the thickness dependence of static and dynamic magnetic properties of Ni81Fe19 thin films,” J. Magn. Magn. Mater. 419, 456–463 (2016).

    Article  CAS  Google Scholar 

  21. Ramesh Garg, Analytical and Computational Methods in Electromagnetics (Artech House, Boston, MA, 2008).

  22. D. Ménard, M. Britel, P. Ciureanu, A. Yelon, V. P. Paramonov, A. S. Antonov, P. Rudkowski, and J. O. Ström-Olsen, “High frequency impedance spectra of soft amorphous fibers,” J. Appl. Phys. 81, 4032–4034 (1997).

    Article  Google Scholar 

  23. S. V. Shcherbinin, S. O. Volchkov, A. V. Svalov, and G. V. Kurlyandskaya, “Microwave absorption of electromagnetic radiation and FeNi-based multilayered structures designed for aplications,” Mater., Methods, Technol. 11, 138–150 (2017).

    Google Scholar 

  24. G. V. Kurlyandskaya, R. El Kammouni, S. O. Volchkov, S. V. Shcherbinin, and A. Larrañaga, “Magnetoimpedance sensitive elements based on CuBr/FeCoNi electroplated wires in single and double wire configurations,” IEEE Trans. Magn. 53, 2000415 (2017).

    Article  Google Scholar 

  25. L. V. Panina, K. Mohri, T. Ushiyama, M. Noda, and K. Bushida, “Giant magneto-impedance in Co-rich amorphous wires and films,” IEEE Trans. Magn. 31, 1249–1260 (1995).

    Article  CAS  Google Scholar 

  26. S. O. Volchkov, E. Fernandez, A. Garcíia-Arribas, J. M. Barandiaran, V. N. Lepalovskij, and G. V. Kurlyan-dskaya, “Magnetic properties and giant magnetoimpedance of FeNi-based nanostructured multilayers with variable thickness of the central Cu lead,” IEEE Trans. Magn. 47, 3328–3331 (2011).

    Article  CAS  Google Scholar 

  27. R. S. Beach, N. Smith, C. L. Platt, F. Jeffers, and A. E. Berkowitz, “Magneto impedance effect in NiFe plated wire,” Appl. Phys. Lett. 68, 2753–2755 (1996).

    Article  CAS  Google Scholar 

  28. G. V. Kurlyandskaya, N. G. Bebenin, and V. O. Vas’kovskiy, “Giant magnetic impedance of wires with a thin magnetic coating,” Phys. Met. Metallogr. 111, 133–154 (2011).

    Article  Google Scholar 

  29. A. V. Svalov, E. Fernandez, A. Garcia-Arribas, J. Alonso, M. L. Fdez-Gubieda, and G. V. Kurlyandskaya, “FeNi-based magnetoimpedance multilayers: Tayloring of the softness by magnetic spacers,” Appl. Phys. Lett. 100, 162410 (2012).

    Article  CAS  Google Scholar 

  30. D. de Cos, J. M. Barandiaran, A. García-Arribas, V. O. Vas’kovskiy, and G. V. Kurlyandskaya, “Longitudinal and transverse magnetoimpedance in FeNi/Cu/FeNi multilayers with longitudinal and transverse anisotropy,” IEEE Trans. Magn. 44, 3863–3866 (2008).

    Article  CAS  Google Scholar 

  31. D. R. Baselt, G. U. Lee, M. Natesan, S. W. Metzger, P. E. Sheehan, and R. J. Colton, “A biosensor based on magnetoresistance technology,” Biosens. Bioelectron. 13, 731–739 (1998).

    Article  CAS  Google Scholar 

  32. J. J. Beato-Lopez, J. I. Pérez-Landazábal, and C. Gómez-Polo, “Magnetic nanoparticle detection method employing non-linear magnetoimpedance effects,” J. Appl. Phys. 121, 163901 (2017).

    Article  CAS  Google Scholar 

  33. A. Amirabadizadeh, Z. Lotfollahi, and A. Zelati, “Giant magnetoimpedance effect of Co68.15Fe4.35Si12.5B15 amorphous wire in the presence of magnetite ferrofluid,” J. Magn. Magn. Mater. 415, 102–105 (2016).

    Article  CAS  Google Scholar 

  34. J. H. Grossman and S. E. McNeil, “Nanotechnology in cancer medicine,” Phys. Today 65, 38–42 (2012).

    Article  CAS  Google Scholar 

  35. S. A. M. Khawja, E. Ficiara, F. A. Ruffinatti, I. Stura, M. Argenziano, O. Abollino, R. Cavalli, C. Guiot, and F. D’Agata, “Magnetic iron oxide nanoparticles: Synthesis, characterization and functionalization for biomedical applications in the central nervous system,” Materials 12(3), 465 (2019).

    Article  CAS  Google Scholar 

  36. Yu. A. Kotov, “The electrical explosion of wire: A method for the synthesis of weakly aggregated nanopowders,” Nanotechn. Russ. 4, 415–424 (2009).

    Article  Google Scholar 

  37. I. V. Byzov, A. A. Mysik, A. S. Konev, S. I. Novikov, A. Ye. Yermakov, M. A. Uimin, A. S. Minin, and V. S. Gaviko, “Synthesis, magnetic properties,” Phys. Met. Metallogr. 120, 254–259 (2019).

    Article  CAS  Google Scholar 

  38. I. V. Beketov, A. P. Safronov, A. I. Medvedev, J. Alonso, G. V. Kurlyandskaya, and S. M. Bhagat, “Iron oxide nanoparticles fabricated by electric explosion of wire: Focus on magnetic nanofluids,” AIP Adv. 2, 022154 (2012).

    Article  CAS  Google Scholar 

  39. V. V. Osipov, V. V. Platonov, M. A. Uimin, and A. V. Podkin, “Laser synthesis of magnetic iron oxide nanopowders,” Tech. Phys. 57, 543–549 (2012).

    Article  CAS  Google Scholar 

  40. I. P. Novoselova, A. P. Safronov, O. M. Samatov, I. V. Beketov, A. I. Medvedev, and G. V. Kurlyandskaya, “Water based suspensions of iron oxide obtained by laser target evaporation for biomedical applications,” J. Magn. Magn. Mater. 415, 35–38 (2016).

    Article  CAS  Google Scholar 

  41. F. Spizzo, P. Sgarbossa, E. Sieni, A. Semenzato, F. Dughiero, M. Forzan, R. Bertani, and L. Del Bianco, “Synthesis of ferrofluids made of iron oxide nanoflowers: Interplay between carrier fluid and magnetic properties,” Nanomaterials 7, 373 (2017).

    Article  CAS  Google Scholar 

  42. A. G. Roca, R. Costo, A. F. Rebolledo, S. Veintemillas-Verdaguer, P. Tartaj, T. González-Carreno, M. P. Morales, and C. J. Serna, “Progress in the preparation of magnetic nanoparticles for applications in biomedicine ,” J. Phys. D Appl. Phys. 42, 224002 (2009).

    Article  CAS  Google Scholar 

  43. P. Moroz, S. K. Jones, and B. N. Gray, “Status of hyperthermia in the treatment of advanced liver cancer,” J. Surg. Oncol. 77, 259–269 (2001).

    Article  CAS  Google Scholar 

  44. J. Llandro, J. J. Palfreyman, A. Ionescu, and C. H. W. Barnes, “Magnetic biosensor technologies for medical applications: A review,” Med. Biol. Eng. Comput. 48, 977–998 (2010).

    Article  CAS  Google Scholar 

  45. M. Coisson, G. Barrera, F. Celegato, L. Martino, F. Vinai, P. Martino, G. Ferraro, and P. Tiberto, “Specific absorption rate determination of magnetic nanoparticles through hyperthermia measurements in non-adiabatic conditions,” J. Magn. Magn. Mater. 415, 2–7 (2016).

    Article  CAS  Google Scholar 

  46. A. M. Pavlov, S. A. Gabriel, G. B. Sukhorukov, and D. J. Gould, “Improved and targeted delivery of bioactive molecules to cells with magnetic layer-by-layer assembled microcapsules,” Nanoscale 7, 9686–9693 (2015).

    Article  CAS  Google Scholar 

  47. G. V. Kurlyandskaya, D. S. Portnov, I. V. Beketov, A. Larrañaga, A. P. Safronov, I. Orue, A. I. Medvedev, A. A. Chlenova, M. B. Sanchez-Ilarduya, Ana Martinez-Amesti, and A. V. Svalov, “Nanostructured materials for magnetic biosensing,” Biochim. Biophys. Acta 1861, 1494–1506 (2017).

    Article  CAS  Google Scholar 

  48. T. Liu, S. Hu, T. Liu, D. Liu, and S. Chen, “Magnetic-sensitive behaviour of intelligent ferrogels for controlled release of drug,” Langmuir 22, 5974–5978 (2006).

    Article  CAS  Google Scholar 

  49. F. A. Blyakhman, A. P. Safronov, T. F. Shklyar, and M. A. Filipovich, “To the mechanism of polyelectrolyte gel periodic acting in the constant DC electric field,” Sens. Actuators A 229, 104–109 (2015).

    Article  CAS  Google Scholar 

  50. Electroactive Polymer Actuators as Artificial Muscles: Reality, Potential and Challenges, Ed. by Y. Bar-Cohen (SPIE Press, Bellingham, WA, USA, 2004).

    Google Scholar 

  51. T.-Y. Liu, T.-Y. Chan, K.-S. Wang, and H.-M. Tsou, “Influence of magnetic nanoparticle arrangement in ferrogels for tunable biomolecule diffusion,” RSC Adv. 5, 90098–90102 (2015).

    Article  CAS  Google Scholar 

  52. J. A. Galicia, O. Sandre, F. Cousin, D. Guemghar, C. Menager, and V. Cabuil, “Designing magnetic composite materials using aqueous magnetic fluids,” J. Phys.: Condens. Matter. 15, S1379–S1402 (2003).

    CAS  Google Scholar 

  53. G. V. Kurlyandskaya, E. Fernandez, A. P. Safronov, A. V. Svalov, I. V. Beketov, A. Burgoa Beitia, A. García-Arribas, and F. A. Blyakhman, “Giant magnetoimpedance biosensor for ferrogel detection: model system to evaluate properties of natural tissue,” Appl. Phys. Lett. 106, 193702 (2015).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to thank V.O. Vaśkovskiy, V.N. Lepalovskij, A.P. Safronov, F.A. Blyakhman, and I.V. Beketov for special support.

Funding

This research was funded by the Russian Science Foundation, grant number 18-19-00090.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Kurlyandskaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurlyandskaya, G.V., Shcherbinin, S.V., Buznikov, N.A. et al. Magnetic Materials for Thin Film Based Magnetoimpedance Biosensing. Phys. Metals Metallogr. 120, 1243–1251 (2019). https://doi.org/10.1134/S0031918X19130143

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X19130143

Keywords:

Navigation