Skip to main content
Log in

Deformation-Induced Dissolution of Ni3Al Particles in Nickel: Atomistic Simulation

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract—The simulation of the dissolution of the intermetallic Ni3Al particles in the nickel matrix at low temperatures was performed using the molecular dynamics method. The simulated strain is comparable with that previously obtained for the case of dissolution of these particles in austenitic steels subjected to shear under pressure at low temperatures (up to 77 K). It is worth noting the importance of the twinning in the dissolution. The effects of conditions and kinetics of deformation, as well as possible origins, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. V. V. Sagaradze, V. A. Shabashov, N. V. Kataeva, V. A. Zavalishin, K. A. Kozlov, A. R. Kuznetsov, A. V. Litvinov, and V. P. Pilyugin, “Deformation-induced dissolution of the intermetallics Ni3Ti and Ni3Al in austenitic steels at cryogenic temperatures,” Philos. Mag. 96, 1724–1742 (2016).

    Article  CAS  Google Scholar 

  2. V. V. Sagaradze, V. A. Shabashov, N. V. Kataeva, K. A. Kozlov, A. R. Kuznetsov, and A. V. Litvinov, “Anomalous diffusion processes “dissolution–precipitation” of γ' phase Ni3Al in Fe–Ni–Al alloy during low-temperature deformation,” Mater. Lett. 172, 207–210 (2016).

    Article  CAS  Google Scholar 

  3. P. Pochet, E. Tominez, L. Chaffron, and G. Martin, “Order-disorder transformation in Fe–Al under ball milling,” Phys. Rev. B 52, 4006–4016 (1995).

    Article  CAS  Google Scholar 

  4. Y. Ashkenazy, N. Q. Vo, D. Schwen, S. Robert, R. S. Averback, and P. Bellon, “Shear induced chemical mixing in heterogeneous systems,” Acta Mater. 60, 984–993 (2012).

    Article  CAS  Google Scholar 

  5. V. V. Sagaradze and A. I. Uvarov, Strengthening and Properties of Austenitic Steels (UrO RAN, Ekaterinburg, 2013) [in Russian].

    Google Scholar 

  6. Y. T. Zhu, X. Z. Liao, and X. L. Wu, “Deformation twinning in nanocrystalline materials,” Prog. Mater. Sci. 57, 1–62 (2012).

    Article  CAS  Google Scholar 

  7. G. N. Epshtein, Structure of Metals Deformed by Explosion (Metallurgiya, Moscow, 1988) [in Russian].

    Google Scholar 

  8. A. V. Korchuganov, A. N. Tyumentsev, K. P. Zolnikov, I. Yu. Litovchenko, D. S. Kryzhevich, E. Gutmanas, S. Li, Z. Wang, G. Sergey, and S. G. Psakhie, “Nucleation of dislocations and twins in fcc nanocrystals: Dynamics of structural transformations,” J. Mater. Sci. Technol. 35, 201–206 (2019).

    Article  Google Scholar 

  9. L. A. Zepeda-Ruiz, A. Stukowski, T. Oppelstrup, and V. V. Bulatov, “Probing the limits of metal plasticity with molecular dynamics simulations,” Nature 550, 492–495 (2017).

    Article  CAS  Google Scholar 

  10. B. Gludovatz, A. Hohenwarter, V. S. Keli, K. V. S. Thurston, H. Bei, Z. Wu, E. P. George, and R. O. Ritchie, “Exceptional damage-tolerance of a medium entropy alloy CrCoNi at cryogenic temperatures,” Nature Commun. 7, 10602 (2016).

    Article  CAS  Google Scholar 

  11. Yu. N. Gornostyrev, M. I. Katsnel’son, A. R. Kuznetsov, and A. V. Trefilov, “Microscopic description of the kinetics of a martensitic transition in real crystals: bcc–hcp transition in Zr,” JETP Lett. 70, 380–384 (1999).

    Article  CAS  Google Scholar 

  12. A. R. Kuznetsov, Yu. N. Gornostyrev, M. I. Katsnelson, and A. V. Trefilov, “Effect of the dislocations on the kinetics of a martensitic transition MD simulation of bcc–hcp transformation in Zr,” Mater. Sci. Eng., A 309–310, 168–172 (2001).

    Article  Google Scholar 

  13. M. I. Katsnel’son and A. V. Trefilov, Dynamics and Thermodynamics of Crystal Lattice (Energoatomizdat, Moscow, 2002) [in Russian].

    Google Scholar 

  14. Yu. N. Gornostyrev, V. N. Urtsev, M. K. Zalalutdinov, P. Entel, A. V. Kaptsan, and A. R. Kuznetsov, “Reconstruction of grain boundaries during austenite–ferrite transformation,” Scr. Mater. 53, 153–158 (2005).

    Article  CAS  Google Scholar 

  15. L. E. Kar’kina and L. I. Yakovenkova, Simulation of Atomic Structure of Defects in Crystals (UrO RAN, Ekaterinburg, 2011) [in Russian].

    Google Scholar 

  16. M. P. Kashchenko and V. G. Chashchina, “Dynamic model of supersonic martensitic crystal growth,” Phys.–Usp. 181, 331–349 (2011).

    Article  Google Scholar 

  17. A. Stukowski, “Visualization and analysis of atomistic simulation data with OVITO – the Open Visualization Tool,” Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010).

    Article  Google Scholar 

  18. G. P. Purja Pun and Y. Mishin, “Development of an interatomic potential for the Ni–Al system,” Phil. Mag. 89, 3245–3267 (2009).

    Article  CAS  Google Scholar 

  19. M. I. Baskes, X. Shaz, J. E. Angelox, and N. R. Moody, “Trapping of hydrogen to lattice defects in nickel,” Modell. Simul. Mater. Sci. Eng. 5, 651–652 (1997).

    Article  Google Scholar 

  20. A. F. Voter and S. P. Chen, “Accurate interatomic potentials for Ni, Al, and Ni3Al,” Mater. Res. Soc. Symp. Proc. 82, 175–180 (1987).

    Article  CAS  Google Scholar 

  21. A. F. Voter, “The embedded atom method,” in Intermetallic Compounds: Principles and Practice, Ed. by J. H. Westbrook and R. L. Fleischer (Wiley, New York, 1995), vol. 1, p. 77.

    Google Scholar 

  22. B. A. Greenberg and M. A. Ivanov, Ni3Al and TiAl Intermetallics: Microstructure, Deformation Behavior (UrO RAN, Ekaterinburg, 2002) [in Russian].

    Google Scholar 

  23. J. M. Cowley, “An approximate theory of order in alloys,” Phys. Rev. 77, 669–675 (1950).

    Article  CAS  Google Scholar 

  24. J. M. Cowley, “Short- and long-range order parameters in disordered solid solutions,” Phys. Rev. 120, 1648–1657 (1960).

    Article  CAS  Google Scholar 

  25. A. M. Vlasova and A. Yu. Nikonov, “Formation of dislocations and twins as a result of uniaxial compression of magnesium single crystals: Molecular dynamics simulation,” Crystallogr. Rep. 63, 331–338 (2018).

    Article  CAS  Google Scholar 

  26. A. M. Bayazitov, E. A. Korznikova, I. A. Shepelev, A. P. Chetverikov, S. Kh. Khadiullin, E. A. Sharapov, P. V. Zakharov, and S. V. Dmitriev, “Scenarios of mass transfer in fcc copper: the role of point defects,” IOP Conf. Ser.: Mater. Sci. Eng. 447, 012040 (2018).

  27. Yu. I. Golovin, “Nanoindentation and mechanical properties of solids in submicrovolumes, thin near-surface layers, and films: A Review,” Phys. Solid State 50, 2205–2236 (2008).

    Article  CAS  Google Scholar 

  28. A. V. Markidonov, M. D. Starostenkov, T. I. Neverova, and A. A. Barchuk, “Dynamic braking of crowdion complexes,” Pis’ma Mater. 1, 102–106 (2011).

    Google Scholar 

  29. I. K. Razumov, Yu. N. Gornostyrev, and A. E. Ermakov, “Scenarios of nonequilibrium phase transformations in alloys depending on the temperature and intensity of plastic deformation,” Phys. Met. Metallogr. 119, 1133–1140 (2018).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The Uran supercomputer of IMM UB RAS was used in this work.

Funding

The work has been performed in the framework of the state assignment of the Ministry of Education and Science of the Russian Federation (topic “Structure”, АААА-А18-118020190116-6 and “Pressure”, АААА-А18-118020190104-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Kuznetsov.

Additional information

Translated by O. Golovnya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, A.R., Starikov, S.A., Sagaradze, V.V. et al. Deformation-Induced Dissolution of Ni3Al Particles in Nickel: Atomistic Simulation. Phys. Metals Metallogr. 120, 1187–1192 (2019). https://doi.org/10.1134/S0031918X19120093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X19120093

Keywords:

Navigation