Skip to main content
Log in

Structure of Iron Deformed at 250°С by Torsion under a Pressure

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Transmission electron microscopy and scanning electron microscopy were used to study the evolution of the structure of iron (of 99.97% purity) in the course of deformation at 250°С by torsion under pressure. Electron back-scattered diffraction analysis was used to determine the size of recrystallized grains, their orientation, angular range of grain-boundary misorientation, and fraction of recrystallized structure. It was found that, upon deformation at 250°С by torsion under a pressure, the dynamic recrystallization of iron starts on reaching the true strain е = 2.4. At the steady stage of deformation, the structure with an average grain size of 0.5 µm forms, which is characterized by the absence of any preferential orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. N. A. Smirnova, V. I. Levit, V. P. Pilyugin, R. I. Kuznetsov, L. S. Davydova, V. A. Sazonova, “Evolution of fcc single crystals at high plastic deformations,” Fiz. Met. Metalloved. 61, 1170–1177 (1986).

    CAS  Google Scholar 

  2. Y. Estrin and A. Vinogradov, “Extreme grain refinement by severe plastic deformation: A wealth of challenging science,” Acta Mater. 61, 782–817 (2013).

    Article  CAS  Google Scholar 

  3. Yu. V. Kaletina, E. D. Greshnova, A. Yu. Kaletin, N. Yu. Frolova, and V. P. Pilyugin, “Structure and properties of Ni47Mn42In11 alloy after severe plastic deformation,” Phys. Met. Metallogr. 120, 171–176 (2019).

    Article  CAS  Google Scholar 

  4. A. Hohenwarter, “Incremental high pressure torsion as a novel severe plastic deformation process: Processing features and application to copper,” Mater. Sci. Eng., A 626, 80–85 (2015).

    Article  CAS  Google Scholar 

  5. A. Vorhauer and R. Pippan, “On the onset of a steady state in body-centered cubic iron during severe plastic deformation at low homologous temperatures,” Metall. Mater. Trans. A 39, 417–429 (2008).

    Article  Google Scholar 

  6. P. Ghosh, O. Renk, and R. Pippan, “Microtexture analysis of restoration mechanisms during high pressure torsion of pure nickel,” Mater. Sci. Eng., A 684, 101–109 (2017).

    Article  CAS  Google Scholar 

  7. E. A. Korznikova, “Calorimetric studies of copper subjected to torsion deformation in Bridgman anvils,” Pis’ma Mater. 2, 67–70 (2012).

    Google Scholar 

  8. T. I. Chashchukhina, M. V. Degtyarev, and L. M. Voronova, “Effect of pressure on the evolution of copper microstructure upon large plastic deformation,” Phys. Met. Metallogr. 109, 201–209 (2010).

    Article  Google Scholar 

  9. T. I. Chashchukhina, L. M. Voronova, M. V. Degtyarev, and D. K. Pokryshkina, “Deformation and dynamic recrystallization in copper at different deformation rates in Bridgman anvils,” Phys. Met. Metallogr. 111, 304–313 (2011).

    Article  Google Scholar 

  10. M. V. Degtyarev, L. M. Voronova, T. I. Chashchukhina, V. P. Pilyugin, and N. N. Resnina, “Evolution of the nickel structure during deformation by shear under high pressure at 150°C,” Phys. Met. Metallogr. 118, 256–263 (2017).

    Article  CAS  Google Scholar 

  11. Y. S. Li, Y. Zhang, N. R. Tao, and K. Lu, “Effect of the Zener–Hollomon parameter on the microstructures and mechanical properties of Cu subjected to plastic deformation,” Acta Mater. 57, 761–772 (2009).

    Article  CAS  Google Scholar 

  12. T. L. Brown, C. Saldana, T. G. Murthy, J. B. Mann, Y. Guo, L. F. Allard, A. H. King, W. D. Compton, K. P. Trumble, and S. Chandrasekar, “A study of the interactive effects of strain, strain rate and temperature in severe plastic deformation of copper,” Acta Mater. 57, 5491–5500 (2009).

    Article  CAS  Google Scholar 

  13. S. S. Gorelik, S. V. Dobatkin, and L. M. Kaputkina, Recrystallization of Metals and Alloys (MISIS, Moscow, 2005) [in Russian].

    Google Scholar 

  14. K. Edalati, Z. Horita, T. Furuta, and S. Kuramoto, “Dynamic recrystallization and recovery during high-pressure torsion: Experimental evidence by torque measurement using ring specimens,” Mater. Sci. Eng., A 559, 506–509 (2013).

    Article  CAS  Google Scholar 

  15. K. J. Al-Fadhalah, S. N. Alhajeri, A. I. Almazrouee, and T. G. Langdon, “Microstructure and microtexture in pure copper processed by high-pressure torsion,” J. Mater. Sci. 48, 4563–4572 (2013).

    Article  CAS  Google Scholar 

  16. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J. J. Jonas, “Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions,” Prog. Mater. Sci. 60, 130–207 (2014).

    Article  CAS  Google Scholar 

  17. J.-l. Ning, E. Courtois-Manara, L. Kurmanaeva, A. V. Ganeev, R. Z. Valiev, Ch. Kübel, and Yu. Ivanisenko, “Tensile properties and work hardening behaviors of ultrafine grained carbon steel and pure iron processed by warm high pressure torsion,” Mater. Sci. Eng., A 581, 8–15 (2013).

    Article  CAS  Google Scholar 

  18. L. M. Voronova, M. V. Degtyarev, T. I. Chashchukhina, “Recrystallization of the ultradispersed structure of pure iron formed at different stages of the deformation-induced strain hardening,” Phys. Met. Metallogr. 104, 262–273 (2007).

    Article  Google Scholar 

  19. V. N. Danilenko, S. Yu. Mironov, A. N. Belyakov, and A. P. Zhilyaev, “Application of EBSD analysis in physical material science (A review),” Zavod. Lab., Diagn. Mater. 78, 28–46 (2012).

    CAS  Google Scholar 

  20. H. H. Bernardi, H. R. Z. Sandim, K. D. Zilnyk, B. Verlinden, and D. Raabe, “Microstructural stability of a niobium single crystal deformed by equal channel angular pressing,” Mater. Res. 20, 1238–1247 (2017).

    Article  CAS  Google Scholar 

  21. M. V. Degtyarev, L. M. Voronova, T. I. Chashchukhina, V. B. Vykhodets, L. S. Davydova, T. E. Kurennykh, A. M. Patselov, and V. P. Pilyugin, “Formation and evolution of submicrocrystalline structure in pure iron upon shear under pressure,” Phys. Met. Metallogr. 96, 642–650 (2003).

    Google Scholar 

  22. L. M. Voronova, M. V. Degtyarev, T. I. Chashchukhina, D. V. Shinyavskii, and T. M. Gapontseva, “Effect of microcrystallites formed by deformation on the growth and orientation of grains during recrystallization of iron,” Lett. Mater. 7, 359–362 (2017).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

TEM and SEM studies were performed at the Collective Use Testing Center for Nanotechnologies and Advanced Materials of the Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences. We thank N.V. Nikolaeva for her assistance in performing EBSD studies.

Funding

This study was performed in terms of state task (theme Davlenie, no. АААА-А18-118020190104-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Voronova.

Additional information

Translated by N. Kolchugina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Degtyarev, M.V., Pilyugin, V.P., Chashchukhina, T.I. et al. Structure of Iron Deformed at 250°С by Torsion under a Pressure. Phys. Metals Metallogr. 120, 1193–1199 (2019). https://doi.org/10.1134/S0031918X19120044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X19120044

Keywords:

Navigation