Skip to main content
Log in

Change in Thermophysical Properties and Melting Temperature of Niobium with Increasing Pressure

  • THEORY OF METALS
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Based on the Mie–Lennard-Jones interatomic pair potential and the Einstein crystal model, the thermal equation of state and the pressure dependences of the thermophysical properties of niobium are obtained. The pressure dependences of the Debye temperature, the first, second, and third Grüneisen parameters, isothermal compression modulus, isochoric and isobaric heat capacity, thermal expansion coefficient, and the pressure derivatives of these parameters along the 300 and 3000 K isotherms are studied. The calculations showed good agreement with experimental data. Based on the results obtained, the pressure dependence of the melting point of niobium and its pressure derivative are calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. P. I. Dorogokupets, T. S. Sokolova, B. S. Danilov, and K. D. Litasov, “Near-absolute equations of state of diamond, Ag, Al, Au, Cu, Mo, Nb, Pt, Ta, and W for quasi-hydrostatic conditions,” Geodinamika i Tektonofizika 3, No. 2, 129–166 (2012).

    Article  Google Scholar 

  2. M. R. Fellinger, H. Park, and J. W. Wilkins, “Force-matched embedded-atom method potential for niobium,” Phys. Rev. B 81, No. 14, 144119-1–144119-15 (2010).

    Article  Google Scholar 

  3. M. N. Magomedov, The study of Interatomic Interaction, Formation of Vacancies, and Self-Diffusion in Crystals (Fizmatlit, Moscow, 2010) [in Russian].

    Google Scholar 

  4. M. N. Magomedov, “On self-diffusion in iron at very strong compression of crystal,” Phys. Met. Metallogr. 114, No. 3, 207–216 (2013).

    Article  Google Scholar 

  5. M. N. Magomedov, “On self-diffusion and surface energy under compression of diamond, silicon, and germanium,” Tech. Phys. 83, No. 12, 1789–1799 (2013).

    Article  Google Scholar 

  6. M. N. Magomedov, “Change in the thermophysical properties of BCC iron during isothermal compression,” Tech. Phys. 85, No. 11, 1619–1625 (2015).

    Article  Google Scholar 

  7. M. N. Magomedov, “Change in the lattice properties and melting temperature of a face-centered cubic iron under compression,” Tech. Phys. 87, No. 4, 569–576 (2017).

    Article  Google Scholar 

  8. M. N. Magomedov, “Variations in thermal properties of diamond under isothermal compression,” Tech. Phys. 87, No. 5, 661–668 (2017).

    Article  Google Scholar 

  9. M. N. Magomedov, “State equations and properties of various polymorphous modifications of silicon and germanium,” Phys. Solid State 59, No. 6, 1085–1093 (2017).

    Article  CAS  Google Scholar 

  10. E. N. Akhmedov, “Molybdenum lattice properties at high pressure,” J. Phys. Chem. Solids 121, 62–66 (2018).

    Article  CAS  Google Scholar 

  11. M. N. Magomedov, “The calculation of the parameters of the Mie–Lennard-Jones potential,” High Temp. 44, No. 4, 513–529 (2006).

    Article  CAS  Google Scholar 

  12. S. I. Novikova, Thermal Expansion of Solids (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  13. R. G. McQueen, S. P. Marsh, J. W. Taylor, J. N. Fritz, and W. J. Carter, “The equation of state of solids from shock wave studies”, In High-Velocity Impact Phenomena, Ed. by R. Kinslow (Academic, New York, 1970).

    Google Scholar 

  14. T. Kenichi and A. K. Singh, “High-pressure equation of state for Nb with a helium-pressure medium: Powder X-ray diffraction experiments,” Phys. Rev. B 73, No. 22, 224 119(9) (2006).

  15. L. V. Al’tshuler, S. E. Brusnikin, and E. A. Kuz’menko, “Isotherms and Grüneisen functions of 25 metals,” Zh. Prikladnoi Mekhaniki i Tekhnicheskoi Fiz., No. 1, 134–146 (1987).

  16. Y. Zou, X. Qi, X. Wang, T. Chen, X. Li, D. Welch, L. Baosheng, “High-pressure behavior and thermoelastic properties of niobium studied by in situ X-ray diffraction,” J. Appl. Phys. 116, No. 1, 013 516(6) (2014).

    Article  Google Scholar 

  17. A. Karbasi, S. K. Saxena, and R. Hrubiak, “The thermodynamics of several elements at high pressure,” Calphad Comput. Coupling Phase Diagrams Thermochem. 35, No. 1, 72–81 (2011).

    Article  CAS  Google Scholar 

  18. C. Nie, B. Zong, and J. Wang, “Pressure dependency Grüneisen parameter γ for bcc Mo,” Appl. Phys. Res. 6, No. 4, 26–30 (2014).

    Article  CAS  Google Scholar 

  19. Z. Y. Zeng, C. E. Hu, X. R. Chen, X. L. Zhang, L. C. Cai, and F. Q. Jing, “Density functional theory investigation of the phonon instability, thermal equation of state and melting curve of Mo,” Phys. Chem. Chem. Phys. 13, No. 4, 1669–1675 (2011).

    Article  CAS  Google Scholar 

  20. S. N. Vaidya and G. C. Kennedy, “Compressibility of 22 elemental solids to 45 kb,” J. Phys. Chem. Solids 33, No. 7–9, 1377–1389 (1972).

    Article  CAS  Google Scholar 

  21. A. K. Singh and T. Kenichi, “Measurement and analysis of nonhydrostatic lattice strain component in niobium to 145 GPa under various fluid pressure-transmitting media,” J. Appl. Phys. 90, No. 7, 3269–3275 (2001).

    Article  CAS  Google Scholar 

  22. Y. Song, R. Yang, D. Li, W. T. Wu, and Z. X. Guo, “Calculation of theoretical strengths and bulk moduli of bcc metals,” Phys. Rev. B 59, No. 22, 14 220–14 225 (1999).

    Article  Google Scholar 

  23. L. Koči, Y. Ma, A. R. Oganov, P. Souvatzis, and R. Ahuja, “Elasticity of the superconducting metals V, Nb, Ta, Mo, and W at high pressure,” Phys. Rev. B 77, No. 21, 214 101(5) (2008).

  24. Q. Jiang, H. M. Lu, and M. Zhao, “Modelling of surface energies of elemental crystals,” J. Phys.: Condens. Matter 16, No. 4, 521–530 (2004).

    CAS  Google Scholar 

  25. X. D. Dai, J. H. Li, and Y. Kong, “Long-range empirical potential for the bcc structured transition metals,” Phys. Rev. B 75, No. 5, 052 102(4) (2007).

  26. M. N. Magomedov, “On the criterion of the crystal-liquid phase transition,” Phys. Met. Metallogr. 105, No. 2, 116–125 (2008).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to M.N. Magomedov, N.Sh. Gazanova, and A.A. Aliverdiev for fruitful discussions and assistance in this work.

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-29-11013_mk) and the Presidium of the Russian Academy of Sciences (program no. I.13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Kramynin.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kramynin, S.P., Akhmedov, E.N. Change in Thermophysical Properties and Melting Temperature of Niobium with Increasing Pressure. Phys. Metals Metallogr. 120, 1027–1032 (2019). https://doi.org/10.1134/S0031918X19110097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X19110097

Keywords:

Navigation