Skip to main content
Log in

Structure of MgB2 Ceramics Synthesized with Excess of Magnesium after Cold Deformation and Annealing

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract—In a bulk MgB2 compound synthesized with an excess of magnesium, a structure that could provide high critical currents has been obtained as a result of deformation by upsetting and subsequent annealing at 650°C for 7 h. The investigation of this structure using X-ray diffraction and scanning and transmission electron microscopy methods has shown that a dense nanosized matrix MgB2 phase with good intergrain bonding is formed in the obtained material. In the matrix phase, there are uniformly distributed dispersed inclusions of MgO, which could serve as pinning centers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. K. Tachikawa, Y. Yamada, M. Enomoto, M. Aodai, H. Kumakura, “Structure and critical current of ni-sheathed PIT MgB2 tapes with in metal powder addition,” Physica. C 392, 1030–1034 (2003).

    Article  Google Scholar 

  2. A. Serquis, L. Civale, D. L. Hammon, X. Z. Liao, J. Y. Coulter, Y. T. Zhu, D. E. Peterson, and F. M. Mueller, “Role of excess mg and heat treatments on microstructure and critical current of MgB2 wires,” J. Appl. Phys. 94, 4024–4031 (2003).

    Article  CAS  Google Scholar 

  3. R. Zeng, L. Lu, W. X. Li, J. L. Wang, D. Q. Shi, J. Horvat, S. X. Dou, M. Bhatia, M. Sumption, E. W. Collings, J. M. Yoo, M. Tomsic, and M. Rindfleisch, “Excess Mg addition MgB2/Fe wires with enhanced critical current density,” J. Appl. Phys. 103, 083911 (2008).

    Article  Google Scholar 

  4. O. Perner, J. Eckert, W. Hassler, C. Fischer, J. Acker, T. Gemming, G. Fuchs, B. Holzapfel, and L. Schultz, “Stoichiometry dependence of superconductivity and microstructure in mechanically alloyed MgB2,” J. Appl. Phys. 97, 056105 (2005).

    Article  Google Scholar 

  5. H. Zhang, Y. Zhao, and Y. Zhang, “The effects of the Mg addition on the superconductivity of MgB2,” J. Supercond. Novel Magn. 28, 2711–2714 (2015).

    Article  CAS  Google Scholar 

  6. S. Rajput and S. Chaudhary, “On the superconductivity and Mg outdiffusion in vacuum-synthesized MgB2 samples,” IEEE Trans. Appl. Supercond. 20, 2390–2396 (2010).

    Article  CAS  Google Scholar 

  7. E. I. Kuznetsova, M. V. Degtyarev, Yu. V. Blinova, S. V. Sudareva, Yu. N. Akshentsev, and V. P. Pilyugin, “Mechanism of the formation of structure during high-temperature annealing of MgB2 bulk samples deformed under pressure,” Phys. Solid State, 59, 1695–1702 (2017).

    Article  CAS  Google Scholar 

  8. E. I. Kuznetsova, T. P. Krinitsina, Yu. V. Blinova, M. V. Degtyarev, and S. V. Sudareva, “Fine structure of a bulk MgB2 superconductor after deformation and heat treatment,” Phys. Met. Metallogr. 118, 346–353 (2017).

    Article  CAS  Google Scholar 

  9. M. V. Degtyarev, V. P. Pilyugin, Yu. N. Akshentsev, E. I. Kuznetsova, T. P. Krinitsina, Yu. V. Blinova, S. V. Sudareva, and E. P. Romanov, “Influence of high-pressure deformation and annealing on the structure and properties of a bulk MgB2 superconductor,” Phys. Met. Metallogr. 117, 772–782 (2016).

    Article  CAS  Google Scholar 

  10. Y. C. Liu, Q. Z. Shi, Q. Zhao, and Z. Q. Ma, “Kinetics analysis for the sintering of bulk MgB2 superconductor,” J. Mater. Sci.: Mater. Electron 18, 855–861.

    Google Scholar 

  11. Z. Q. Ma and Y. C. Liu, “Low-temperature synthesis of MgB2 superconductors,” Int. Mater. Rev 56, 267–286 (2011).

    Article  CAS  Google Scholar 

  12. E. I. Kuznetsova, S. V. Sudareva, T. P. Krinitsina, Yu. V. Blinova, E. P. Romanov, Yu. N. Akshentsev, M. V. Degtyarev, M. A. Tikhonovskii, and I. F. Kislyak, “Mechanism of the formation and specific features of the structure of massive samples of compound MgB2,” Phys. Met. Metallogr. 115, 175–185 (2014).

    Article  Google Scholar 

  13. E. I. Kuznetsova, Yu. N. Akshentsev, V. O. Esin, S. V. Sudareva, Yu. V. Blinova, M. V. Degtyarev, V. I. Novozhonov, and E. P. Romanov, “Mechanisms of the formation of a bulk superconducting phase MgB2 at high temperatures,” Phys. Solid State 57, 873–879 (2015).

    Article  CAS  Google Scholar 

  14. G. Z. Li, M. D. Sumption, and E. W. Collings, “Kinetic analysis of MgB2 layer formation in advanced internal magnesium infiltration (AIMI) processed MgB2 wires,” Acta Mater. 96, 66–71 (2015).

    Article  CAS  Google Scholar 

  15. E. I. Kuznetsova, T. P. Krinitsina, M. V. Degtyarev, and Yu. V. Blinova, “Structure of magnesium diboride after cold deformation and low-temperature recovery annealing,” Phys. Met. Metallogr. 119, 1204–1209 (2018).

    Article  CAS  Google Scholar 

  16. E. I. Kuznetsova, T. P. Krinitsina, M. V. Degtyarev, and Yu. V. Blinova, “Mechanisms of cold deformation under high pressure of superconductive MgB2 ceramics,” Phys. Met. Metallogr. 119, 802–809 (2018).

    Article  CAS  Google Scholar 

  17. S. Hata, H. Sosiati, N. Kuwano, Y. Tomokiyo, A. Matsumoto, M. Fukutomi, H. Kitaguchi, K. Komori, and H. Kumakura, “Effects of heat treatments on microstructure formation in MgB2/YSZ/hastelloy film,” IEEE Trans. Appl. Supercond. 15, 3238–3241.

  18. T. Wenzel, K. G. Nickel, J. Glaser, H.-J. Meyer, D. Eyidi, and O. Eibl, “Electron probe microanalysis of Mg–B compounds: Stoichiometry and heterogeneity of superconductors,” Phys. Status Solidi A 198, 374–386 (2003).

    Article  CAS  Google Scholar 

  19. D. Eyidi, O. Eibl, T. Wenzel, K. G. Nickel, S. I. Schlachter, and W. Goldacker, “Superconducting properties, microstructure and chemical composition of MgB2 sheathed materials,” Supercond. Sci. Technol. 16, 778–788 (2003).

    Article  CAS  Google Scholar 

  20. X. Z. Liao, A. Serquis, Y. T. Zhu, J. Y. Huang, L. Civale, D. E. Peterson, F. M. Mueller, and H. F. Xu, “Mg(B,O)2 precipitation in MgB2,” J. Appl. Phys. 93, 6208–6215 (2003).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The investigations were performed using the equipment of the Center of Collaborative Access “Test Center of Nanotechnologies and Advanced Materials,” Institute of Metal Physics, Ural Branch, Russian Academy of Sciences.

The authors thank V.P. Pilyugin for the deformation of the samples and the staff of the National Science Center “Kharkov Institute of Physics and Technologies” M.A. Tikhonovskii and I.F. Kislyak, who supplied us with the initial samples.

Funding

The work was performed within the framework of the state task according to the theme “Davlenie,” no. АААА-А18-118020190104-3 and was supported by the project of the Ural Branch, Russian Academy of Sciences, no. 18-10-2-24.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Kuznetsova.

Additional information

Translated by G. Salnikov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsova, E.I., Krinitsina, T.P., Degtyarev, M.V. et al. Structure of MgB2 Ceramics Synthesized with Excess of Magnesium after Cold Deformation and Annealing. Phys. Metals Metallogr. 120, 867–873 (2019). https://doi.org/10.1134/S0031918X19090060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X19090060

Keywords:

Navigation