Skip to main content
Log in

Structure and Phase Composition of Sputtered Films of Hafnium–Carbon Alloys

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Ion-plasma sputtering and codeposition of ultrafine particles of hafnium and carbon were used to produce film coatings in the concentration ranges of 5.3–59.8 at % C. Structural investigations revealed the existence of Hf–C solid solutions in the concentration range of 5.3–11.5 at % C. In the concentration range of 21.5–59.8 at % C, the coatings consist of the hafnium-carbide phase; and at 16.2 at % C, both phases coexist. The lattice parameters of the phases present in the films and their variation depending on the carbon concentration have been determined. The dependence of the HfС lattice parameter in the range of 16.2–35.0 at % C on the nature of the substrate on which the coating is deposited has been established. The solid solutions of carbon in hafnium exhibit conductivity of metallic type; the resistance of the hafnium carbide almost does not change upon cooling from 300 to 11 K. The direct synthesis of hafnium carbide HfC by a codeposition of nanoparticles on the surface of products can be used as a technological method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. N. P. Padture, M. Gell, and E. H. Jordan, “Thermal barrier coatings for gas-turbine engine applications,” Science 296, 280–284 (2002).

    CAS  Google Scholar 

  2. J. H. Perepezko, “The hotter the Engine, the better,” Science 326, 1068–1069 (2009).

    Article  CAS  Google Scholar 

  3. K. Lu, “The future of metals,” Science 328, 319–320 (2010).

    Article  CAS  Google Scholar 

  4. G. Liu, G. J. Zhang, F. Jiang, X. D. Ding, Y. J. Sun, J. Sun, and E. Ma, “Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility,” Nat. Mater. 12, 344–350 (2013).

    Article  CAS  Google Scholar 

  5. E. Wuchina, E. Opila, M. Opeka, W. Fahrenholtz, and I. Talmy, “UHTCs: Ultra-high temperature ceramic materials for extreme environment applications,” Electrochem. Soc. Interf. 16, 30–36 (2007).

    CAS  Google Scholar 

  6. W. M. Haynes, CRC Handbook of Chemistry and Physics, 93rd Ed. (CRC Press, Boca Raton FL, 2012) pp. 4–65, 4–93.

  7. R. V. Sara, “The hafnium-carbon system,” Trans. Metall. Soc. AIME 233, 1683–1691 (1965).

    CAS  Google Scholar 

  8. E. K. Storms, The Refractory Carbides (Academic Press, New York, 1967), pp. 37–40, 83–87.

  9. H. J. Emeleus and A. G. Sharpe, Advances in Inorganic Chemistry and Radiochemistry (Academic Press, New York, 1968), Vol. 11, pp. 165–175.

    Google Scholar 

  10. Handbook on Chemistry, Ed. by B. P. Nikol’skii, 3rd Ed. (Khimiya, Leningrad, 1971), vol. 2 [in Russian].

    Google Scholar 

  11. V. C. Agte and H. Altertum, “Untersuchungen über Systeme hochschmelzender Carbide nebst Beitragen zum Problem der Kohlenstoffschmelzung,” Z. Tech. Physik. 11, 182–185 (1930).

    CAS  Google Scholar 

  12. Rare Metals Handbook . Ed by C. Hampel, 2nd ed. (Reinhold Publ., New York, 1961; Mir, Moscow, 1965).

  13. Q.-J. Hong, “Prediction of the material with highest known melting point from ab initio molecular dynamics calculations,” Phys. Rev. B 92, 020104 (2015).

    Article  Google Scholar 

  14. Q.-J. Hong and A. van de Walle, “Solid–liquid coexistence in small systems: A statistical method to calculate melting temperatures,” J. Chem. Phys. 139, 094114 (2013).

    Article  Google Scholar 

  15. A. Zh. Tuleushev, Yu. Zh. Tuleushev, and V. N. Volodin, “Nanosize alloying in metallic films,” Phys. Met. Metallogr. 97, 371–379 (2004).

    Google Scholar 

  16. V. N. Volodin, Yu. Zh. Tuleushev, K. V. Tsai, and E. A. Zhakanbaev, “New Mo3Pb phase with A15 structure formed in solid solutions of film molybdenum–lead system,” Phys. Met. Metallogr. 115, 500–506 (2014).

    Article  Google Scholar 

  17. V. N. Volodin, Yu. Zh. Tuleushev, E. A. Zhakanbaev, K. V. Tsai and O. V. Rofman, “New NbCd2 phase in niobium–cadmium coating films,” Phys. Met. Metallogr. 119, 169–173 (2018).

    Article  CAS  Google Scholar 

  18. A. Lavrentyev, B. Gabrelian, V. Vorzhev, I. Nikiforov, O. Khyzhun, and J. Rehr, “Electronic structure of cubic HfxTa1–xCy carbides from X-ray spectroscopy studies and cluster self-consistent calculations,” J. Alloys Compd. 462, 4–10 (2008). https://doi.org/10.1016/j.jallcom.2007.08.018

    Article  CAS  Google Scholar 

  19. E. Roduner, Size Effects in Nanomaterials (Tekhnosfera, Moscow, 2010) [in Russian].

    Google Scholar 

  20. Phase Diagrams of Binary Metallic Systems, Ed. by N. P. Lyakishev (Mashinostroenie, Moscow, 1996), Vol. 1 [in Russian]

    Google Scholar 

  21. J. Häglund, A. F. Guillermet, G. Grimvall, and M. Körling, “Theory of bonding in transition-metal carbides and nitrides,” Phys. Rev. B 48, 11685–11691 (1993).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (grants nos. AR05130933/GF5 and AR05130967/GF5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. Zh. Tuleushev.

Additional information

Translated by A. Bannov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuleushev, Y.Z., Volodin, V.N., Pen’kov, F.M. et al. Structure and Phase Composition of Sputtered Films of Hafnium–Carbon Alloys. Phys. Metals Metallogr. 120, 943–948 (2019). https://doi.org/10.1134/S0031918X19080180

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X19080180

Keywords:

Navigation