Skip to main content
Log in

Constitutive Equation for the Hot Deformation Behavior of TiNiNb Shape Memory Alloy

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

In this research, hot deformation behavior of NiTiNb alloy was explored. Then, the activation energy and the constitutive equation were evaluated and obtained. The results show that the compressive process of TiNiNb alloy is a typical rheological process. The thermal activation energy of TiNiNb alloy in the temperature range of 720–840°C is 198.004 kJ/mol. Both NiTi matrix phase and Nb solution have been refined. The amounts of (Ti, Nb)2Ni hard brittle phase and Nb solution were gradually reduced with increasing the strain rate and deformation temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Y. Wang, Z. Lu, K. Zhang, and D. Zhang, “Thermal mechanical processing effects on microstructure evolution and mechanical properties of the sintered Ti–22Al–25Nb alloy, Mater. 9 (3), 189 (2016).

    Article  Google Scholar 

  2. M. Xiao, F. Li, W. Zhao, and G. Yang, “Constitutive equation for elevated temperature flow behavior of TiNiNb alloy based on orthogonal analysis,” Mater. Des. 35, 184–193 (2012).

    Article  Google Scholar 

  3. A. E. Medvedev, A. Molotnikov, R. Lapovok, R. Zeller, S. Berner, P. Habersetzer, and F. Torre Dalla, “Microstructure and mechanical properties of Ti–15Zr alloy used as dental implant material, “J. Mech. Behav. Biomed. Mater. 62, 384–398 (2016).

    Article  Google Scholar 

  4. J. Li, H. Wang, J. Liu, and J. Ruan, “Effects of Nb addition on microstructure and mechanical properties of TiNiNb alloys fabricated by elemental powder sintering, Mater. Sci. Eng., A 609, 235–240 (2014).

    Article  Google Scholar 

  5. X -Q. Yin, C.-H. Park, Y.-F. Li, W.-J. Ye, Y.-T. Zuo, S.-W. Lee, J.-T. Yeom, and X.-J. Mi, “Mechanism of continuous dynamic recrystallization in a 50Ti–47Ni–3Fe shape memory alloy during hot compressive deformation,” J. Alloys Compd. 693, 426–431 (2016).

    Article  Google Scholar 

  6. A. E. Medvedev, A. Molotnikov, R. Lapovok, R. Zeller, S. Berner, P. Habersetzer, and F. Torre Dalla, “Microstructure and mechanical properties of Ti–15Zr alloy used as dental implant material, “J. Mech. Behav. Biomed. Mater. 62, 384–398 (2016).

  7. P. Jenei, H. Choi, A. Tóth, H. Choe, and J. Gubicza, “Mechanical behavior and microstructure of compressed Ti foams synthesized via freeze casting,” J. Mech. Behav. Biomed. Mater. 63, 407–416 (2016).

    Article  Google Scholar 

  8. D. Photiou, N. T. Panagiotopoulos, L. Koutsokeras, G. A. Evangelakis, and G. Constantinides, “Microstructure and nanomechanical properties of magnetron sputtered Ti−Nb films,” Surf. Coat. Technol. 302, 310–319 (2016).

    Article  Google Scholar 

  9. S. Guo, J. Zhang, X. Cheng, and X. Zhao, “A metastable β-type Ti–Nb binary alloy with low modulus and high strength,” J. Alloys Compd. 644, 411–415 (2015).

    Article  Google Scholar 

  10. H. Zhan, W. Zeng, G. Wang, D. Kent, and M. Dargusch, “On the deformation mechanisms and strain rate sensitivity of a metastable β Ti–Nb alloy,” Scr. Mater. 107, 34–37 (2015).

    Article  Google Scholar 

  11. H. Tobe, H. Y. Kim, T. Inamura, H. Hosoda, T. H. Nam, and S. Miyazaki, “Effect of Nb content on deformation behavior and shape memory properties of Ti–Nb alloys,” J. Alloys Compd. 577, S435–S438 (2013).

    Article  Google Scholar 

  12. B. Sharma, S. K. Vajpai, and K. Ameyama, “Microstructure and properties of beta Ti–Nb alloy prepared by powder metallurgy route using titanium hydride powder,” J. Alloys Compd. 656, 978–986 (2016).

    Article  Google Scholar 

  13. S. V. Mehtonen, E. J. Palmiere, R. D. K. Misra, L. P. Karjalainen, and D. A. Porter, “Dynamic restoration mechanisms in a Ti–Nb stabilized ferritic stainless steel during hot deformation,” Mater. Sci. Eng., A 601, 7–19 (2014).

    Article  Google Scholar 

  14. D. Zhao, K. Chang, T. Ebel, M. Qian, R. Willumeit, M. Yan, and F. Pyczak, “Microstructure and mechanical behavior of metal injection molded Ti–Nb binary alloys as biomedical material,” J. Mech. Behav. Biomed. Mater. 28, 171–182 (2013).

    Article  Google Scholar 

  15. Y. Guo, K. Georgarakis, Y. Yokoyama, and A. R. Yavari, “On the mechanical properties of TiNb-based alloys,” J. Alloys Compd. 571, 25–30 (2013).

    Article  Google Scholar 

  16. Y. Mantani and K. Kudou, “Effect of plastic deformation on material properties and martensite structures in Ti–Nb alloys,” J. Alloys Compd. 577, S448–S452 (2013).

    Article  Google Scholar 

  17. H. Zhan, G. Wang, D. Kent, and M. Dargusch, “The dynamic response of a metastable β Ti–Nb alloy to high strain rates at room and elevated temperatures,” Acta Mater. 105, 104–113 (2016).

    Article  Google Scholar 

  18. A. A. Ilyin, M. Y. Kollerov, and I. S. Golovin, “Hydrogen influence on plastic deformation mechanism of β‑titanium alloys of Ti–Nb system,” J. Alloys Compd. 253, 144–147 (1997).

    Article  Google Scholar 

  19. M. A. Li-qiang, L. Zhen-yu, J. Si-hai, Y. Xiang-qian, and W. Di, “Effect of niobium and titanium on dynamic recrystallization behavior of low carbon steels,” J. Iron Steel Res. Int. 15, 31–36 (2008).

    Article  Google Scholar 

  20. R. Bobbili and V. Madhu, “Dynamic recrystallization behavior of a biomedical Ti–13Nb–13Zr alloy,” J. Mech. Behav. Biomed. Mater. 59, 146–155 (2016).

    Article  Google Scholar 

  21. S. V. Mehtonen, E. J. Palmiere, R. D. K. Misra, L. P. Karjalainen, and D. A. Porter, “Dynamic restoration mechanisms in a Ti–Nb stabilized ferritic stainless steel during hot deformation,” Mater. Sci. Eng., A 601, 7–19 (2014).

  22. J. Luo, P. Ye, M. Q. Li, and L. Y. Liu, “Effect of the alpha grain size on the deformation behavior during isothermal compression of Ti–6Al–4V alloy,” Mater. Des. 88, 32–40 (2015).

    Article  Google Scholar 

  23. B. Chen, H. Xiong, B. Sun, S. Tang, B. Du, and N. Li, “Microstructures and mechanical properties of Ti–3Al/Ni-based superalloy joints arc welded with Ti–Nb and Ti–Ni–Nb filler alloys,” Prog. Nat. Sci. 24, 313–320 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Junwei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu Junwei, Shiqiang, L., Qi, Y. et al. Constitutive Equation for the Hot Deformation Behavior of TiNiNb Shape Memory Alloy. Phys. Metals Metallogr. 120, 394–401 (2019). https://doi.org/10.1134/S0031918X19040082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X19040082

Keywords:

Navigation