Skip to main content
Log in

Mechanisms of Cold Deformation under High Pressure of Superconductive MgB2 Ceramics

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Structures of the massive MgB2 samples deformed in Bridgman anvils that were initially in different structural states, namely, as-synthesized and post-four-stage-treated (via deformation + annealing), have been studied by methods of the X-ray diffraction, scanning and transmission electron microscopy, and measurements of microhardness. The process of the deformation of brittle ceramic samples of MgB2 under high pressure has been discussed. An analysis of the obtained data has shown that the plastic deformation of the superconductor MgB2 preliminarily compacted by a four-stage treatment has been implemented in the main through the mutual rotation of crystallites (grains) and by grain-boundary sliding without a noticeable refinement of the grain structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Mechanical Behaviour of Materials under Pressure, Ed. by H. Pugh (Van Nostrand, Amsterdam, 1970; Mir, Moscow, 1973).

  2. G. S. Oleinik, “Structural mechanisms of plastic deformation of ceramic materials,” in Elektron. Mikrosk. Prochn. Mater., Ser.: Fizich. Materialoved., Strukt. Svoistva Mater., No. 20, 3–30 (2014).

    Google Scholar 

  3. P. B. Day and R. J. Stokes, “Mechanical behavior of magnesium oxide at high temperatures,” J. Amer. Ceram. Soc. 47, 493–503 (1964).

    Article  Google Scholar 

  4. G. V. Berezhkova, P. P. Perstnev, and A. E. Romanov, “Effect of preliminary deformation at high temperature on the plastic properties of magnesium oxide crystals,” Dokl. Akad. Nauk SSSR 248, 1105–1108 (1979).

    Google Scholar 

  5. A. V. Leont’eva, V. A. Strel’tsov, and E. P. Fel’dman, “Brittle–plastic transition in crystals under hydrostatic pressure,” Fiz. Tekh. Vys. Davlenii, No. 22, 16–30 (1986).

    Google Scholar 

  6. G. S. Oleinik, V. M. Volkogon, S. K. Avramchuk, A. V. Kotko, and V. M. Vereshchaka, “The role of plastic deformation in compaction and decompaction processes upon the sintering of materials based on wurtzite modificatiopn of boron nitride,” Sverkhtverd. Mater., No. 5, 51–60 (2010).

    Google Scholar 

  7. J. Rabier, “Plastic deformation and dislocations in ceramic materials,” Radiat. Eff. Defects Solids 137, 205–212 (1995).

    Article  Google Scholar 

  8. R. Z. Valiev and I. V. Aleksandrov, Nanostructured Materials Obtained by Severe Plastic Deformation (Logos, Moscow, 2000) [in Russian].

    Google Scholar 

  9. C. B. Carter and M. G. Norton, Ceramic Materials: Science and Engineering (Springer, New York, 2013). doi 10.1007/978-1-4614-3523-5

    Book  Google Scholar 

  10. J. D. DeFouw and D. C. Dunand, “Superplastic compressive flow in MgB2,” Acta Mater. 57, 4745–4750 (2009).

    Article  Google Scholar 

  11. A. Gumbel, J. Eckert, G. Fuchs, K. Nenkov, K. H. Muller, and L. Schultz, “Improved superconducting properties in nanocrystalline bulk MgB2,” Appl. Phys. Lett. 80, 2725–2727 (2002).

    Article  Google Scholar 

  12. C. U. Jung, M. S. Park, W. N. Kang, M. S. Kim, K. H. P. Kim, S. Y. Lee, and S. I. Lee, “Effect of sintering temperature under high pressure on the superconductivity of MgB2,” Appl. Phys. Lett. 78, 4157–4159 (2001).

    Article  Google Scholar 

  13. Y. Takano, H. Takeya, H. Fujii, H. Kumakura, T. Hatano, K. Togano, H. Kito, and H. Ihara, “Superconducting properties of MgB2 bulk materials prepared by high-pressure sintering,” Appl. Phys. Lett. 78, 2914–2916 (2001).

    Article  Google Scholar 

  14. E. I. Kuznetsova, Yu. N. Akshentsev, V. O. Esin, S. V. Sudareva, Yu. V. Blinova, M. V. Degtyarev, V. I. Novozhonov, and E. P. Romanov, “Mechanisms of the formation of a bulk superconducting phase MgB2 at high temperatures,” Phys. Solid State 57, 873–879 (2015).

    Article  Google Scholar 

  15. E. I. Kuznetsova, T. P. Krinitsina, Yu. V. Blinova, M. V. Degtyarev, and S. V. Sudareva, “Fine structure of a bulk MgB2 superconductor after deformation and heat treatment,” Phys. Met. Metallogr. 118, 346–353 (2017).

    Article  Google Scholar 

  16. X. Z. Liao, A. Serquis, Y. T. Zhu, J. Y. Huang, L. Civale, D. E. Peterson, F. M. Mueller, and H. F. Xu, “Mg(B,O)2 precipitation in MgB2,” J. Appl. Phys. 93, 6208–6215 (2003).

    Article  Google Scholar 

  17. E. I. Kuznetsova, M. V. Degtyarev, Yu. V. Blinova, S. V. Sudareva, Yu. N. Akshentsev, and V. P. Pilyugin, “Mechanism of the formation of structure during high-temperature annealing of MgB2 bulk samples deformed under pressure,” Phys. Solid State 59, 1695–1701 (2017).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The studies were performed using equipment of the Center of Collaborative Access “Test Center of Nanotechnologies and Advanced Materials,” Institute of Metal Physics, Ural Branch, Russian Academy of Sciences.The work was performed under the state task according to the theme “Pressure,” АААА-А18-118020190104-3, as well as under the project of the Ural Branch, Russian Academy of Sciences, no. 18-10-2-24.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Kuznetsova.

Additional information

Translated by G. Salnikov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsova, E.I., Krinitsina, T.P., Sudareva, S.V. et al. Mechanisms of Cold Deformation under High Pressure of Superconductive MgB2 Ceramics. Phys. Metals Metallogr. 119, 802–809 (2018). https://doi.org/10.1134/S0031918X18080070

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X18080070

Keywords:

Navigation