Skip to main content
Log in

Effect of Titanium Additions on the Thermophysical Properties of Glass-Forming Cu50Zr50 Alloy

  • Electrical and Magnetic Properties
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Differential scanning calorimetry, laser flash method, and dilatometry were used to study the thermophysical properties of quenched Cu50Zr50–xTix (x = 0, 2, 4, 6, 8) alloys in the temperature range from room temperature to 1100 K. Data obtained on the heat capacity, thermal diffusivity, and density have been used to calculate the coefficient of thermal conductivity. Temperatures corresponding to the stability of martensite CuZr phase, its eutectoid decomposition, and formation in Cu50Zr50–xTix alloys with different Ti contents upon heating have been determined. It has been found that the thermal diffusivity and thermal conductivity of the studied alloys are low and a typical of metallic systems. As the titanium content increases, the coefficients of thermal conductivity and thermal diffusivity vary slightly. It has been shown that the low values of thermophysical characteristics correspond to the better capability of amorphization and can be a criterion for the glass-forming ability of Cu–Zr-based alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. K. Song, P. Gargarella, S. Pauly, G. Z. Ma, U. Kühn, and Eckert J., “Correlation between glassforming ability, thermal stability, and crystallization kinetics of Cu–Zr–Ag metallic glasses,” J. Appl. Phys. 112, 063503 (2012).

    Article  Google Scholar 

  2. E. S. Park, H. J. Chang, and D. H. Kim, “Effect of addition of Be on glass-forming ability, plasticity and structural change in Cu–Zr bulk metallic glasses,” Acta Mater. 56, 3120–3131 (2008).

    Article  Google Scholar 

  3. Y. Zhang, J. Chen, G. L. Chen, and X. J. Liu, “Glass formation mechanism of minor yttrium addition in CuZrAl alloys,” Appl. Phys. Lett. 89, 131904 (2006).

    Article  Google Scholar 

  4. P. Yu, H. Y. Bai, M. B. Tang, and W. L. Wang, “Excellent glass-forming ability in simple Cu50Zr50-based alloys,” J. Non-Cryst. Solids. 351, 1328–1332 (2005).

    Article  Google Scholar 

  5. S. Pauly, J. Das, C. Duhamel, and J. Eckert, “Effect of titanium on microstructure and mechanical properties of Cu50Zr50–xTix (2.5 ≤ x ≤ 7.5) glass matrix composites,” Metall. Mater. Trans. A 39, 1868–1873 (2008).

    Article  Google Scholar 

  6. K. K. Song, S. Pauly, Y. Zhang, P. Gargarella, R. Li, N. S. Barekar, U. Kühn, M. Stoica, and J. Eckert, “Strategy for pinpointing the formation of B2 CuZr in metastable CuZr-based shape memory alloys,” Acta Mater. 59, 6620–6630 (2011).

    Article  Google Scholar 

  7. G. Effenberg and S. Ilyenko, “Cu–Ti–Zr (Copper–Titanium–Zirconium),” in Non-ferrous Metal Systems. Part 3 (Springer, Berlin–Heidelberg, 2007), pp. 436–464.

    Google Scholar 

  8. J. W. Seo and D. Schryvers, “TEM investigation of the microstructure and defects of CuZr martensite. Part I: Morphology and twin systems,” Acta Mater. 46, 1165–1175 (1998).

    Article  Google Scholar 

  9. D. Schryvers, G. S. Firstov, J. W. Seo, J. Van Humbeeck, and Y. N. Koval, “Unit cell determination in CuZr martensite by electron microscopy and X-ray diffraction,” Scr. Mater. 36, 1119–1125 (1997).

    Article  Google Scholar 

  10. S. Pauly, G. Liu, G. Wang, U. Kühn, N. Mattern, and J. Eckert, “Microstructural heterogeneities governing the deformation of Cu47.5Zr47.5Al5 bulk metallic glass composites,” Acta Mater. 57, 5445–5453 (2009).

    Article  Google Scholar 

  11. G. S. Firstov, J. Van Humbeeck, and Y. N. Koval, “Peculiarities of the martensitic transformation in ZrCu intermetallic compound - potential high temperature SMA,” J. Phys. IV 11, 481–486 (2001).

    Google Scholar 

  12. Y. N. Koval, G. S. Firstov, and A. V. Kotko, “Martensitic transformation and shape memory effect in ZrCu intermetallic compound,” Scr. Metall. Mater. 27, 1611–1616 (1992).

    Article  Google Scholar 

  13. F. A. Javid, N. Mattern, S. Pauly, and J. Eckert, “Martensitic transformation and thermal cycling effect in Cu–Co–Zr alloys,” J. Alloys Compd. 509, S334–S337 (2011).

    Article  Google Scholar 

  14. F. Qiu, P. Shen, C. Liu, and Q. C. Jiang, “Effects of Ni addition on the microstructure and compressive deformation behavior in Zr–Cu–Ni martensitic alloys,” Mater. Des. 34, 143–147 (2012).

    Article  Google Scholar 

  15. F. Q. Meng, K. Tsuchiya, F. X. Yin, S. Ii, and Y. Yokoyama, “Influence of Al content on martensitic transformation behavior in Zr50Cu50 − xAlx,” J. Alloys Compd. 522, 136–140 (2012).

    Article  Google Scholar 

  16. V. A. Bykov, T. V. Kulikova, D. A. Yagodin, V. V. Filippov, and K. Yu. Shunyaev, “Thermophysical and Electrical Properties of Equiatomic CuZr Alloy,” Phys. Met. Metallogr. 116, 1067–1072 (2015).

    Article  Google Scholar 

  17. S. Uporov, V. Bykov, and S. Estemirova, “Electrical and thermal conductivities of rapidly crystallized Cu‒Zr alloys: The effect of anharmonicity,” Phys. B 499, 97–106 (2016).

    Article  Google Scholar 

  18. H. Men, J. Fu, C. Ma, S. Pang, and T. Zhang, “Bulk glass formation in ternary Cu–Zr–Ti system,” J. Univ. Sci. Technol. Beijing 14, 19–22 (2007).

    Article  Google Scholar 

  19. K. Shinzato and T. A. Baba, “Laser flash apparatus for thermal diffusivity and specific heat capacity measurements,” J. Therm. Anal. Calorim. 64, 413–422 (2001).

    Article  Google Scholar 

  20. C. Dai, H. Guo, Y. Li, and J. Xu, “A new composition zone of bulk metallic glass formation in the Cu–Zr–Ti ternary system and its correlation with the eutectic reaction,” J. Non-Cryst. Solids 354, 3659–3665 (2008).

    Article  Google Scholar 

  21. S. Pauly, J. Das, J. Bednarcik, N. Mattern, K. B. Kim, D. H. Kim, and J. Eckert, “Deformation-induced martensitic transformation in Cu–Zr–(Al,Ti) bulk metallic glass composites,” Scr. Mater. 60, 431–434 (2009).

    Article  Google Scholar 

  22. K. K. Song, D. Y. Wu, S. Pauly, C. X. Peng, L. Wang, and J. Eckert, “Thermal stability of B2 CuZr phase, microstructural evolution and martensitic transformation in Cu–Zr–Ti alloys,” Intermetallics 67, 177–184 (2015).

    Article  Google Scholar 

  23. Y. K. Kuo, K. M. Sivakumar, C. A. Su, C. N. Ku, S. T. Lin, A. B. Kaiser, J. B. Qiang, Q. Wang, and C. Dong, “Measurement of low-temperature transport properties of Cu-based Cu–Zr–Ti bulk metallic glass,” Phys. Rev. B 74, 014208 (2006).

    Article  Google Scholar 

  24. V. A. Bykov, T. V. Kulikova, L. B. Vedmid’, A. Ya. Fishman, K. Yu. Shunyaev, and N. Yu. Tarenkova, “Thermophysical Properties of Ti–5Al–5V–5Mo–3Cr–1Zr Titanium Alloy,” Phys. Met. Metallogr. 115, 751–755 (2014).

    Article  Google Scholar 

  25. M. Hasegawa, H. Sato, T. Takeuchi, K. Soda, and U. Mizutani, “Electronic structure of Zr-based metallic glasses,” J. Alloys Compd. 483, 638–641 (2009).

    Article  Google Scholar 

  26. G. Ghosh, “First-principles calculations of structural energetics of Cu–TM (TM = Ti, Zr, Hf) intermetallics,” Acta Mater. 55, 3347–3374 (2007).

    Article  Google Scholar 

  27. K. Soda, K. Shimba, S. Yagi, M. Kato, T. Takeuchi, U. Mizutani, T. Zhang, M. Hasegawa, A. Inoue, T. Ito, and S. Kimura, “Electronic structure of bulk metallic glass ZrAlCuNi,” J. Electron. Spectrosc. Relat. Phenom. 144, 585–587 (2005).

    Article  Google Scholar 

  28. D. V. Louzguine-Luzgin, J. Antonowicz, K. Georgarakis, G. Vaughan, A. R. Yavari, and A. Inoue, “Realspace structural studies of Cu–Zr–Ti glassy alloy,” J. Alloys Compd. 466, 106–110 (2008).

    Article  Google Scholar 

  29. Z. D. Sha, H. Pan, Q. X. Pei, and Y. W. Zhang, “The nature of the atomic-level structure in the Cu–Zr binary metallic glasses,” Intermetallics 26, 8–10 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Bykov.

Additional information

Original Russian Text © V.A. Bykov, D.A. Yagodin, T.V. Kulikova, S.Kh. Estemirova, K.Yu. Shunyaev, 2018, published in Fizika Metallov i Metallovedenie, 2018, Vol. 119, No. 6, pp. 554–560.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bykov, V.A., Yagodin, D.A., Kulikova, T.V. et al. Effect of Titanium Additions on the Thermophysical Properties of Glass-Forming Cu50Zr50 Alloy. Phys. Metals Metallogr. 119, 523–529 (2018). https://doi.org/10.1134/S0031918X18060054

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X18060054

Keywords

Navigation