Skip to main content
Log in

Electrocontact material based on silver dispersion-strengthened by nickel, titanium, and zinc oxides

  • Structure, Phase Transformations, and Diffusion
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Samples of a composite electrocontact material based on silver strengthened by the dispersed phases of zinc and titanium oxides have been investigated by the electron microscopy and energy dispersive X-ray spectroscopy. A uniform distribution of the oxide phases containing 2 wt % zinc oxide in the initial charge has been revealed. The increase in the amount of zinc oxide leads to an increase of the size of the oxide phases. It has been shown that at the zinc oxide content of 2 wt %, the minimum wear is observed in the process of electroerosion tests; at 3 wt %, an overheating and welding of the contacts are observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Holm, Electric Contacts (Springer-Verlang, Berlin, 2010).

    Google Scholar 

  2. N. K. Myshkin, V. V. Konchits, and M. Braunovich, Electric Contacts (Intellekt, Dolgoprudnyi, 2008).

    Google Scholar 

  3. L. T. Denisova, N. V. Belousova, V. M. Denisov, and V. V. Ivanov, “Application of silver (review),” Zh. Sibir. Feder. Univ. Tekh. Tekhnol. 2, 250–277 (2009).

    Google Scholar 

  4. C.-H. Xu, D.-Q. Yi, C.-P. Wu, B. Wang, H.-Q. Liu, and X.-D. Lu, “The effect of additives on microstructure and physical property of Ag–ZnO electrical contact materials,” J.Funct. Materials 39, 1306–1309 (2008).

    Google Scholar 

  5. G. M. Zeer, “Investigation of the microstructure and properties of electrocontact silver–zinc-oxide-nanopowder material,” Phys. Met. Metallogr. 113, 902–906 (2012).

    Article  Google Scholar 

  6. C. P. Wu, D. Q. Yi, J. Li, L. R. Xiao, B. Wang, and F. Zheng, “Investigation on microstructure and performance of Ag/ZnO contact material,” J. Alloys Compd. 457, 565–570 (2008).

    Article  Google Scholar 

  7. D. Guzman, P. Munoz, C. Aguilar, I. Iturriza, L. Lozada, P. A. Rojas, M. Thirumurugan, and C. Martinez, “Synthesis of Ag–ZnO powders by means of a mechanochemical process,” Appl. Phys. A: Mat. Sci. Proc. 117, 871–875 (2014).

    Article  Google Scholar 

  8. N. S. Nikolaeva, V. V. Ivanov, and A. A. Shubin, “Microstructure and properties of Ag/ZnO composite obtained from coprecipitate salts,” Perspekt. Mater., no. 2, 71–77 (2012).

    Google Scholar 

  9. N. S. Nikolaeva, V. V. Ivanov, A. A. Shubin, and A. V. Sidorak, “Electroconductivity of Ag/ZnO composite obtained from coprecipitate mixtures,” Perspekt. Mater., no. 8, 68–73 (2013).

    Google Scholar 

  10. J. Sekikawa and T. Kubono, “Effect of contact materials of Ag/SnO2 and Ag/ZnO on rotational motion of break arcs driven by radial magnetic field,” IEICE Trans. Electronics E93–C, 1387–1392 (2010).

    Article  Google Scholar 

  11. V. Ćosović, N. Talijan, D. Živković, D. Minić, and Ž. Živković, “Comparison of properties of silver–metal oxide electrical contact materials,” J. Min. Metall. Sect. B: Metallurgy 48, 131–141 (2012).

    Article  Google Scholar 

  12. J. Swingler and A. Sumption, “Arc erosion of AgSnO2 electrical contacts at different stages of a break operation,” Rare Metals 29, 248–254 (2010).

    Article  Google Scholar 

  13. A. Kratzschmar, R. Herbst, T. Mutzel, R. Niederreuther, and P. Braumann, “Basic investigations on the behavior of advanced Ag/SnO2 materials for contactor applications,” in Proc. Annual Holm Conf. on Electrical Contacts, 127–133 (2010).

    Google Scholar 

  14. X. Qiao, Q. Shen, L. Zhang, L. Chen, X. Fan, and H. Yang, “A novel method for the preparation of Ag/SnO2 electrical contact materials,” Rare Metal Mater. Eng. 43, 2614–2618 (2014).

    Article  Google Scholar 

  15. H. Wang, Q. Yang, and J. Wang, “Effects of additives on the wettability of AgSnO2 contact material,” Proc. 5th Int. Conf. on Reliability of Electrical Products and Electrical Contacts, ICREPEC-2014, 2014. P. 295–299.

    Google Scholar 

  16. J. Wang, D. Li, and Y. Wang, “Microstructure and properties of Ag/SnO2 Materials with High SnO2 Content,” J. Alloys Compd. 582, 1–5 (2014).

    Article  Google Scholar 

  17. H. N. Lim, R. Nurzulaikha, I. Harrison, S. S. Lim, W. T. Tan, and M. C. Yeo, “Spherical tin oxide, SnO2 particles fabricated via facile hydrothermal method for detection of mercury(II) ions,” Int. J. Electrochem. Sci. 6, 4329–4340 (2011).

    Google Scholar 

  18. Y. Zhu, J. Wang, L. An, and H. Wang, “Preparation and study of nano-Ag/SnO2 electrical contact material doped with titanium element,” Rare Metal Mater. Eng. 43, 1566–1570 (2014).

    Article  Google Scholar 

  19. Z. Yancai, W. Jingqin, A. Liqiang, and W. Haitao, “Study on Ag/SnO2/TiO2 electrical contact materials prepared by liquid phase in-situ chemical route,” Adv. Mater. Res. 936, 486–490 (2014).

    Article  Google Scholar 

  20. Y. Zhu, J. Wang, H. Wang, and J. Ding, “Preparation and study on nano-Ag/SnO2 electrical contact material doped rare earth element,” Mater. Sci. Forum 789, 270–274 (2014).

    Article  Google Scholar 

  21. J. K. Kim, D. J. Jang, K. I. Ju, E. H. Um, S. Lee, and T. W. Nam, “The effect of the Zn contents on rapidly solidified Ag–Zn electric contact materials,” J. Korean Inst. Metals Mater. 46, 443–448 (2008).

    Google Scholar 

  22. V. A. Zelenskii, S. F. Zabelin, A. B. Ankudinov, and I. V. Tregubova, “Study of mechanical and technological properties of dispersion-strengthed electrical contact materials on the base of silver composite powders,” Uchenye Zapiski ZabGU. Fiz. Matem. Tekh. Tekhnol. 3, 59–69 (2015).

    Google Scholar 

  23. W. Schatt, K.-P. Wieters, and B. Kieback, Pulvermetallurgie. Technologien und Werkstoffe (Springer, Berlin, 2007).

    Google Scholar 

  24. Y. Jiang, S. H. Liu, J. L. Chen, Y. Mao, M. Xie, and X. D. Sun, “Preparation of rod-like SnO2 powder and its application in Ag-SnO2 electrical contact materials,” Mater. Res. Innov. 19, 152–156 (2015).

    Article  Google Scholar 

  25. G. M. Zeer, E. G. Zelenkova, V. V. Beletskii, S. V. Nikolaev, A. N. Kozhurin, M. Yu. Kuchinskii, and O. A. Grigor’eva, “Microstructure and properties of the electroncontact Cu-(ZnO/TiO2) material,” Tech. Phys. 60, 1823–1828 (2015).

    Article  Google Scholar 

  26. V. Ivanov, A. Sidorak, A. Shubin, and I. Kotlyarov, “The laboratory equipment for the prompt functional properties measurement of electrocontact materials,” J. Siber. Feder. Univ. Eng. Technol., no. 7, 229–234 (2014).

    Google Scholar 

  27. K. Gan, G. Qi, X. Chen, and L. Chen, “Ag–Ni-oxide electrical contact material and preparation method thereof,” China Patent 101649401, 2010.

    Google Scholar 

  28. G. G. Gnesin, V. A. Dubok, G. N. Braterskaya, I. I. Kovenskii, G. V. Levchenko, R. V. Minakova, Yu. B. Paderno, O. A. Panasyuk, O. K. Teodorovich, and L. N. Tul’chinskii, Sintered Electrocontact Materials for Electroengineering and Electronics. A Handbook (Metallurgiya, Moscow, 1981) [in Russian].

    Google Scholar 

  29. D. Findaizen, E. Fridrikh, I. Kalning, A. Merts, K.Myuller, G. Rebsh, Kh. Zauer, V. Shatt, Kh. Khaibe, G. Shuster, Kh. Vibbeler, and K.-P. Viters, Powder Metallurgy. Sintered and Composite Materials (Metallurgiya, Moscow, 1983) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Zeer.

Additional information

Original Russian Text © G.M. Zeer, E.G. Zelenkova, O.V. Belousov, V.V. Beletskii, S.V. Nikolaev, O.N. Ledyaeva, 2017, published in Fizika Metallov i Metallovedenie, 2017, Vol. 118, No. 9, pp. 935–940.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeer, G.M., Zelenkova, E.G., Belousov, O.V. et al. Electrocontact material based on silver dispersion-strengthened by nickel, titanium, and zinc oxides. Phys. Metals Metallogr. 118, 890–895 (2017). https://doi.org/10.1134/S0031918X17070134

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X17070134

Keywords

Navigation