Skip to main content
Log in

Autowave processes of the localization of plastic flow in active media subjected to deformation

  • Strength and Plasticity
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Conditions have been considered for the formation of autowaves of localized plastic flow in the deformed metals upon the propagation of Lüders bands in the case of the Portevin–Le Chatelier effect, and upon the formation of a neck with taking into account the differences in the microscopic mechanisms of plastic deformation in the case of these phenomena. The laws that govern the development of the localized plastic flow of metals and the role of these laws in the development of the above effects have been investigated. It has been established that the main features of the deformation characteristic of these phenomena are determined by the differences in the properties of the active media that are formed in the material upon plastic deformation. The mechanisms of the generation of different autowave modes of the localized plastic flow upon the Lüders deformation, Portevin–Le Chatelier effect, and the formation of a neck in active media of different nature during deformation have been considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. F. Bell, Mechanics of Solids: Volume I: The Experimental Foundations of Solid Mechanics (Springer, Berlin, 1973; Nauka, Moscow, 1984).

    Google Scholar 

  2. J. Pelleg, Mechanical Properties of Materials (Springer Dordrecht, 2013).

    Book  Google Scholar 

  3. T. Tomas, Plastic Flow and Fracture in Solids (Academic Press, New York, 1961; Mir, Moscow, 1964).

    Google Scholar 

  4. G. I. Kanel, V. E. Fortov, and S. V. Razorenov, “Shock waves incondensed-state physics,” Phys.-Usp., 50, 771–791 (2007).

    Article  Google Scholar 

  5. A. M. Glezer and L. S. Metlov, “Physics of megaplastic (severe) deformation in solids,” Phys. Solid State, 52, 1162–1169 (2010).

    Article  Google Scholar 

  6. L. M. Brown, “Fifty years old, and still going strong: Transmission electron optical studies of materials,” Mater. Sci. Eng., A 483–484, 3–8 (2008).

    Article  Google Scholar 

  7. U. Messerschmidt, Dislocation Dynamics during Plastic Deformation, (Springer, Berlin, 2010).

    Book  Google Scholar 

  8. P. Veyssière, H. Wang, D. S. Xu, and Y. L. Chiu, “Local dislocation reaction, self-organization and hardening in single slip,” IOP Conf. Ser.: Mater. Sci. Eng. 3, 012018 (2009).

    Article  Google Scholar 

  9. Seeger, A. and Frank, W., “Structure formation by dissipative processes in crystals with high defect densities,” in Non-Linear Phenomena in Material Science, Ed. by L. P. Kubin and G. Martin (Trans. Tech. Publ., New York, 1987).

    Google Scholar 

  10. G. Nikolis and I. Prigogine, Exploring Complexity. An Introduction (W. H. Freeman and Co, San Francisco, 1989; Mir, Moscow, 1990).

    Google Scholar 

  11. H. Haken, Information and Self-Organization: A Macroscopic Approach to Complex Systems (Springer, New York, 1988; Mir, Moscow, 1991).

    Google Scholar 

  12. L. B. Zuev, V. I. Danilov, and S. A. Barannikova, Physics of Plastic Flow Macrolocalization (Novosibirsk, Nauka, 2008) [in Russian].

    Google Scholar 

  13. L. B. Zuev, “Entropy of localized plastic strain waves,” Tech. Phys. Lett. 31, 89–90 (2005).

    Article  Google Scholar 

  14. L. B. Zuev and S. A. Barannikova, “Autowaves of localized plastic flow, velocity of propagation, dispersion, and entropy,” Phys. Met. Metallogr., 112, 109–116 (2011).

    Article  Google Scholar 

  15. L. B. Zuev, “Autowave mechanics of plastic flow in solids,” Phys. Wave Phenom. 20, 166–173 (2012).

    Article  Google Scholar 

  16. L. B. Zuev and S. A. Barannikova, “Experimental study of plastic flow macro-scale localization process: Pattern, propagation rate, dispersion,” Int. J. Mech. Sci. 88, 1–8 (2014).

    Article  Google Scholar 

  17. V. A. Vasilyev, Yu. M. Romanovskii, and V. G. Yakhno, Autowave Processes (Nauka, Moscow, 1987) [in Russian].

    Book  Google Scholar 

  18. A. Yu. Loskutov and A. S. Mikhailov, Introduction into Synergetics (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  19. Yu. M. Romanovskii, N. V. Stepanova, and D. S. Chernavskii, Mathematical Biophysics (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  20. L. S. Polak and A. S. Mikhailov, Self-organization in non-equilibrium physicochemical systems (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  21. P. Hähner, “Theory of solitary plastic waves,” Appl. Phys. A 58, 41–58 (1994).

    Article  Google Scholar 

  22. E. Rizzi and P. Hähner, “On the Portevin-Le Chatelier effect: Theoretical modeling and numerical results,” Int. J. Plasticity 20, 121–132 (2004).

    Article  Google Scholar 

  23. M. M. Krishtal, “Interrelation between the instability and mesoscopic nonuniformity of plastic deformation: I. The problems of “abnormality” of mechanical properties of materials in the various types of instability of plastic deformation; II. Nonlinear Model of Stability of Plastic Deformation: Formulation, Analysis,Numerical Simulation, and Quantitative Estimates,” Phys. Met. Metallogr. 92, 293–312 (2001).

    Google Scholar 

  24. M. Zaiser and E. C. Aifantis, “Randomness and slip avalanches in gradient plasticity,” Int. J. Plasticity 22, 1432–1455 (2006).

    Article  Google Scholar 

  25. E. C. Aifantis, “Gradient material mechanics: Perspectives and prospects,” Acta Mech. 225, 999–1012 (2014).

    Article  Google Scholar 

  26. O. A. Plekhov, O. B. Naimark, N. Saintier, and T. Palin-Luc, “Elastic-plastic transition in iron: Structural and thermodynamic features,” Tech. Phys. 79, 1141–1146 (2009).

    Article  Google Scholar 

  27. L. P. Kubin, K. Chihab, and Y. Estrin, “The rate dependence of the Portevin-Le Chatelier effect,” Acta Met. 36, 2707–2718 (1988).

    Article  Google Scholar 

  28. H. M. Zbib and de la T. D. Rubia, “A multiscale model of plasticity,” Int. J. Plasticity 18, 1133–1163 (2002).

    Article  Google Scholar 

  29. W. Oliferuk and M. Maj, “Stress-strain curve and stored energy during uniaxial deformation of polycrystals,” Europ. J. Mech.–A/Solids 28, 266–272 (2009).

    Article  Google Scholar 

  30. M. Sjödahl, “Digital speckle photography,” in Digital Speckle Pattern Interferometry and Related Techniques, Ed. by P. K. Rastogi (Wiley, New York, 2001), pp. 289–336.

    Google Scholar 

  31. L. B. Zuev, V. V. Gorbatenko, and K. V. Pavlichev, “Elaboration of speckle photography techniques for plastic flow analysis,” Meas. Sci. Technol. 21, 054014 (2010).

    Article  Google Scholar 

  32. V. I. Danilov, A. V. Bochkareva, and L. B. Zuev, “Macrolocalization of deformation in the material with intermittent flow,” Phys. Met. Metallogr. 107, 616–623 (2009).

    Article  Google Scholar 

  33. E. S. Nikitin, Semukhin, and L. B. Zuev, “Localized plastic flow and spatiotemporal distribution of acoustic emission in steel,” Tech. Phys. Lett.,” 34, 666–667 (2008).

    Google Scholar 

  34. V. E. Zakharov and E. A. Kuznetsov, “Solitons and collapses: Two evolution scenarios of nonlinear wave systems,” Phys.-Usp., 55, 535–556 (2012).

    Article  Google Scholar 

  35. L. B. Zuev, “Using a crystal as universal generator of localized plastic flow autowaves,” Bull. Russ. Acad. Sci.: Phys. 78, 957–964 (2014).

    Article  Google Scholar 

  36. P. Y. Manach, S. Thuillier, J. W. Yoon, J. Coër, and H. Laurent, “Kinematics of Portevin–le Chatelier bands in simple shear,” Int. J. Plasticity 58, 66–83 (2014).

    Article  Google Scholar 

  37. V. I. Nekorkin and V. B. Kazantsev, “Autowaves and solitons in a three-component reaction-diffusion system,” Int. J. Bifurc. Chaos 12, 2421–2434 (2002).

    Article  Google Scholar 

  38. V. A. Davydov, N. V. Davydov, V. G. Morozov, M. N. Stolyarov, and Y. Yamaguchi, “Autowaves in the moving excitable media,” Cond. Matter Phys. 7, 565–578 (2004).

    Article  Google Scholar 

  39. E. P. Zemskov and A. Yu. Loskutov, “Oscillatory traveling waves in excitable media,” J. Exp. Theor. Phys. 107, 344–349 (2008).

    Article  Google Scholar 

  40. Encyclopedia of Nonlinear Science, Ed. by A. Scott (Taylor Francis Books, New York, 2005; FizMatLit, Moscow, 2007).

  41. J. S. Langer, E. Bouchbinder, and T. Lookman, “Thermodynamic theory of dislocation-mediated plasticity,” Acta Mater. 58, 3718–3732 (2010).

    Article  Google Scholar 

  42. J. M. T. Thompson, Instabilities and Catastrophes in Science and Engineering (Wiley, Chichester, 1982; Mir, Moscow, 1985).

    Google Scholar 

  43. V. V. Pustovalov, “Serrated deformation of metals and alloys at low temperatures (review),” Low Temp. Phys. 34, 683–723 (2008).

    Article  Google Scholar 

  44. J. K. Burnett, Theory and Uses of Acoustic Emission (Nova Sci. Publ., New York, 2012).

    Google Scholar 

  45. A. Argon, Strengthening Mechanisms in Crystal Plasticity (Univ. Press, Oxford, 2008).

    Google Scholar 

  46. D. Kuhlmann-Wilsdorf, “The low energetic structures theory of solid plasticity,” in Dislocations in Solids, Ed. by F. R. N. Nabarro and M. S. Duesbery (Elsevier, Amsterdam, 2002), pp. 213–338.

    Google Scholar 

  47. D. Caillard and J. L. Martin, Thermally Activated Mechanisms in Crystal Plasticity (Elsevier, Oxford, 2003).

    Google Scholar 

  48. R. E. Newnham, Properties of Materials (Univ. Press, Oxford, 2005).

    Google Scholar 

  49. A. H. Cottrell, Dislocations and Plastic Flow in Crystals (Clarendon Press, Oxford, 1953; Metallurgizdat, Moscow, 1958).

    Google Scholar 

  50. J. W. Martin, Precipitation Hardening (Butterworth–Heinemann, Oxford, 1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. B. Zuev.

Additional information

Original Russian Text © L.B. Zuev, 2017, published in Fizika Metallov i Metallovedenie, 2017, Vol. 118, No. 8, pp. 851–860.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuev, L.B. Autowave processes of the localization of plastic flow in active media subjected to deformation. Phys. Metals Metallogr. 118, 810–819 (2017). https://doi.org/10.1134/S0031918X17060114

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X17060114

Keywords

Navigation