Skip to main content
Log in

Condensation of Cu nanoparticles from the gas phase

  • Structure, Phase Transformations, and Diffusion
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

In order to determine the most efficient modes of copper-nanoparticle synthesis, a number of experiments on evaporation with the subsequent condensation of the initial material in the argon atmosphere have been carried out. In the course of the experiments, it has been discovered that intensified evaporation significantly increases the average size of the synthesized particles. However, the investigation of the change in the dimensional characteristics of the produced clusters depending on the intensity of the buffer-gas flow faced serious difficulties. The obtained results differ significantly from the earlier experiments on the synthesis of the transition-metal oxides. In order to solve this contradiction, the computer simulation of the condensation of copper atoms from the gas phase with three different cooling rates and two final temperatures T = 373 K and Т = 77 K has been performed. It has been discovered that the cooling rate of the gas mixture and the final temperature directly influence the quantity and size of the produced particles. Thus, at a tenfold lower cooling rate, the average number of particles increases 2.7 times at a final temperature of 77 K and by 3.1 times at T = 373 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. V. Zolotukhina, B. R. Gel’chinskii, N. V. Kishkoparov, S. A. Oglezneva, and D. V. Ershov, “Nanodispersed copper powders: Production, properties and applications,” Nanotekhnika, No. 8, 22–26 (2006).

    Google Scholar 

  2. K. K. R. Datta, C. Kulkarni, and M. Eswaramoorthy, “Aminoclay: A permselective matrix to stabilize copper nanoparticles,” Chem. Commun. 46, 616–618 (2010).

    Article  Google Scholar 

  3. A. G. Nasibulin, L. I. Shurygina, and E. I. Kauppinen, “Synthesis of nanoparticles using vapor-phase decomposition of copper (II) acetylacetonate,” Colloid J. 67, 1–20 (2005).

    Article  Google Scholar 

  4. R. Strobel and S. E. Pratsinis, “Flame aerosol synthesis of smart nanostructured materials,” J. Mater. Chem. 17, 4743–4756 (2007).

    Article  Google Scholar 

  5. N. Osterwalder, C. Capello, K. Hungerbuhler, and W. J. Stark, “Energy consumption during nanoparticle production: How economic is dry synthesis?” J. Nanopart. Res. 8, 1–9 (2006).

  6. A. P. Zav’yalov, K. V. Zobov, I. K. Chakin, V. V. Syzrantsev, and S. P. Bardakhanov, “Synthesis of copper nanopowders using electron-beam evaporation at atmospheric pressure of inert gas,” Nanotechnology in Russia 9, 660–666 (2014).

    Article  Google Scholar 

  7. P. A. Lin, A. Kumar, and R. M. Sankaran, “New insights into plasma-assisted dissociation of organometallic vapors for gas-phase synthesis of metal nanoparticles,” Plasma Proces. Polym. 9, 1184–1193 (2012).

    Article  Google Scholar 

  8. A. P. Weber, P. Davoodi, M. Seipenbusch, and G. Kasper, “Size effects in the catalytic activity of unsupported metallic nanoparticles,” J. Nanopart. Res. 5, 293–298 (2003).

    Article  Google Scholar 

  9. A. P. Weber, M. Seipenbusch, C. Thanner, and G. Kasper, “Aerosol catalysis on nickel,” J. Nanopart. Res. 1, 253–265 (1999).

    Article  Google Scholar 

  10. H. Fissan, M. K. Kennedy, T. J. Krinke, and F. E. Kruis, “Nanoparticles from the gas phase as building blocks for electrical devices,” J. Nanopart. Res. 5, 299–310 (2003).

    Article  Google Scholar 

  11. S. V. Zhidovinova, L. V. Zolotukhina, and B. R. Gel’chinskii, “Oxidation of copper ultrafine powders and nanopowders produced by vapor phase condensation,” Russ. Metall. (Metally) 2010, 774–778 (2010).

    Article  Google Scholar 

  12. A. A. Rempel’, “Nanotechnologies. Properties and applications of nanostructured materials,” Russ. Chem. Rev. 76, 435–461 (2007).

    Article  Google Scholar 

  13. Heerman, D.V., Computer Simulations Methods in Theoretical Physics (Springer-Verlag, Berlin, 1986).

    Book  Google Scholar 

  14. B. J. Alder and T. E. Wainwright, “Molecular dynamics computations for the hard sphere system,” Nuovo Cim. 9, 116–132 (1958).

    Article  Google Scholar 

  15. A. N. Lagar’kov and V. M. Sergeev, “Molecular dynamics method in statistical physics,” Phys.-Usp. 21, 566–588 (1978).

    Google Scholar 

  16. V. A. Polukhin, V. F. Ukhov, and M. M. Dzugutov, Computer Simulation of Dynamics and Structures of Liquid Crystals (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  17. K. Binder and D. W. Heerman, Monte-Carlo Simulations in Statistical Physics (Springer-Verlag, Berlin, 1992; Nauka, Moscow, 1995).

    Google Scholar 

  18. K. Ohno, K. Esfarjani, and Y. Kawazoe, Computational materials science. From ab-initio to Monte Carlo methods (Springer-Verlag, Berlin, 1999).

    Google Scholar 

  19. V. A. Polukhin and E. D. Kurbanova, “Dependence of the thermal stability of the interface states of d metals (Cu, Pd, Ti, Ni) and Al with graphene on the character of sorption and diffusion mobility in a contact zone,” Russ. J. Phys. Chem. A 89, 531–546 (2015).

    Article  Google Scholar 

  20. A. E. Galashev and V. A. Polukhin, “Computer analysis of the stability of copper films on graphene,” Russ. J. Phys. Chem. A 88, 995–999 (2014).

    Article  Google Scholar 

  21. V. S. Myasnichenko and M. D. Starostenkov, “Formation of fivefold axes in the FCC-metal nanoclusters,” Appl. Surf. Sci. 260, 51–53 (2012).

    Article  Google Scholar 

  22. V. A. Polukhin and N. A. Vatolin, “Stability and technical evolution of transition-metal and silicon clusters,” Russ. Chem. Rev. 84, 498–539 (2015).

    Article  Google Scholar 

  23. A. G. Vorontsov, B. R. Gel’chinskii, and A. E. Korenchenko, “Kinetics and energy states of nanoclusters in the initial stage of homogeneous condensation at high supersaturation degrees,” J. Exp. Theor. Phys. 115, 789–797 (2012).

    Article  Google Scholar 

  24. M. S. Daw and M. I. Baskes, “Embedded-atom method: Derivation and application to impurities, surfaces and other defects in metals,” Phys. Rev. B: Condens. Matter 29, 6443–6453 (1984).

    Article  Google Scholar 

  25. E. Kesälä, A. Kuronen, and K. Nordlund, “Molecular dynamics simulation of pressure dependence of cluster growth in inert gas condensation,” Phys. Rev. B: Condens. Matter Mate. Phys. 75, 174121 (2007).

    Article  Google Scholar 

  26. V. Rosato, M. Guillope, and B. Legrand, “Thermodynamical and structural properties of FCC transition metals using a simple tight-binding model,” Philos. Mag. A 59, 321–336 (1989).

    Article  Google Scholar 

  27. F. H. Stillinger and T. A. Weber, “Computer simulation of local order in condensed phases of silicon,” Phys. Rev. B: Condens. Matter 31, 5262–5271 (1985).

    Article  Google Scholar 

  28. F. Cleri and V. Rosato, “Tight-binding potentials for transition metals and alloys,” Phys. Rev. B: Condens. Matter 48, 22–33 (1993).

    Article  Google Scholar 

  29. S. L. Gafner and Yu. Ya. Gafner, “Analysis of gasphase condensation of nickel nanoparticles,” J. Exp. Theor. Phys. 107, 712–722 (2008).

    Article  Google Scholar 

  30. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1985).

    Google Scholar 

  31. K. Yasuoka and X. C. Zeng, “Molecular dynamics of homogeneous nucleation in the vapor phase of Lennard-Jones. III. Effect of carrier gas pressure,” J. Chem. Phys. 126, 124320 (2007).

    Article  Google Scholar 

  32. K. Yasuoka and M. J. Matsumoto, “Molecular dynamics of homogeneous nucleation in the vapor phase. I. Lennard-Jones fluid,” J. Chem. Phys. 109, 8451–8463 (1998).

    Article  Google Scholar 

  33. J. D. Honeycutt and H. C. Anderson, “Molecular dynamics study of melting and freezing of small Lennard-Jones clusters,” J. Chem. Phys. 91, 4950–4963 (1987).

    Article  Google Scholar 

  34. S. Tsyganov, J. Kastner, B. Rellinghaus, T. Kauffeldt, F. Westerhoff, and D. Wolf, “Analysis of Ni nanoparticle gas phase sintering,” Phys. Rev. B: Condens. Matter Mater. Phys. 75, 045421 (2007).

    Article  Google Scholar 

  35. P. Krasnechtchekov, K. Albe, and R. S. Averback, “Simulations of the inert gas condensation process,” Z. Metallkd. 94, 1098–1105 (2003).

    Article  Google Scholar 

  36. I. V. Chepkasov, Yu. Ya. Gafner, and S. L. Gafner, “Effect of cooling rate and final temperature on the structure and form of copper nanoclusters synthesized from gas phase,” Pis’ma o Mater. 1, 107–109 (2011).

    Google Scholar 

  37. N. Luemmen and T. Kraska, “Investigation of the formation of iron nanoparticles from the gas phase by molecular dynamics simulations,” Nanotecnology 15, 525–533 (2004).

    Article  Google Scholar 

  38. N. B. Volkov, E. L. Fen’ko, and A. P. Yalovets, “Simulation of generation of ultradispersed particles upon irradiation of metals by a high-power electron beam,” Tech. Phys. 55, 1389–1399 (2010).

    Article  Google Scholar 

  39. V. M. Ievlev and E. V. Shvedov, “Kinetics of formation of discrete nanostructures during vacuum condensation from a single-component vapor,” Phys. Solid State 48, 144–149 (2006).

    Article  Google Scholar 

  40. G. Rollmann, R. Meyer, and P. Entel, “Nucleation and growth of Ni clusters in an Ar atmosphere,” Phase Trans. 78, 733–740 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Chepkasov.

Additional information

Original Russian Text © I.V. Chepkasov, Yu.Ya. Gafner, S.L. Gafner, S.P. Bardahanov, 2016, published in Fizika Metallov i Metallovedenie, 2016, Vol. 117, No. 10, pp. 1037–1047.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chepkasov, I.V., Gafner, Y.Y., Gafner, S.L. et al. Condensation of Cu nanoparticles from the gas phase. Phys. Metals Metallogr. 117, 1003–1012 (2016). https://doi.org/10.1134/S0031918X16080020

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X16080020

Keywords

Navigation