Skip to main content
Log in

Investigation of Special Misorientations in Lath Martensite of Low-Carbon Steel Using the Method of Orientation Microscopy

  • Structure, Phase Transformations, and Diffusion
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Special misorientations between the laths of martensite packets in a low-carbon structural steel have been investigated by the method of EBSD-based orientation microscopy. It has been established that, in the process of the γ → α transformation, as a consequence of Kurdjumov—Sachs orientation relationships (ORs), special misorientations of the Σ3, Σ11, Σ33c, and Σ99a types are formed between the laths of a packet. The Σ3 misorientation is exact, and the remaining misorientations close to the special ones are formed with identical angular deviations as a result of the need to match the misorientations of laths in triple junctions (Σ3 + Σ11 → Σ33c, Σ3 + + Σ33c → Σ99a). Triple junctions of laths also appear in the packet that include a low-angle boundary (LAB) (between two laths of one orientation) and two boundaries of the Σ33c type, which can lead to the appearance of a boundary of the Σ41c type (Σ33c + LAB → Σ41c). The misorientation that corresponds to the Σ25b boundary discovered in the structure probably appears between the laths as a consequence of the fulfillment of the Nishiyama ORs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Yu. Zolotarevskii, E. V. Nesterova, A. S. Rubtsov, and V. V. Rybin, “High-angle boundaries arising upon phase transformations,” Poverkhnost: Fiz., Khim., Mekh., No. 5, 30–35 (1982).

    Google Scholar 

  2. Y. Adachi, M. Wakita, H. Beladi, and P. D. Hodgson, “The formation of ultrafine ferrite through static transformation in low carbon steels,” Acta Mater. 55, 4925–4934 (2007).

    Article  Google Scholar 

  3. R. Shukla, S. K. Ghosh, D. Chakrabarti, and S. Chatterjee, “Microstructure, texture, property relationship in thermo-mechanically processed ultra-low carbon micro alloyed steel for pipe line application,” Mater. Sci. Eng., A 587, 201–208 (2013).

    Article  Google Scholar 

  4. W. Gong, Y. Tomota, Y. Adachi, A. M. Paradowska, J. F. Kelleher, and S. Y. Zhang, “Effects of ausforming temperature on bainite transformation, microstructure and variant selection in nanobainite steel,” Acta Mater. 61, 4142–4154 (2013).

    Article  Google Scholar 

  5. K. D. Zilnyk, V. B. Oliveira, H. R. Z. Sandim, A. Moslang, and D. Raabe, “Martensitic transformation in eurofer-97 and ODS-eurofer steels: A comparative study,” J. Nucl. Mater. 462, 360–367 (2015).

    Article  Google Scholar 

  6. V. M. Schastlivtsev, D. P. Rodionov, V. D. Sadovskii, and L. V. Smirnov, “Some structural features of quenched melt-grown single crystals of structural steels,” Fiz. Met. Metalloved. 30, 1238–1244 (1970).

    Google Scholar 

  7. V. M. Schastlivtsev, L. B. Blind, D. P. Rodionov, and I. L. Yakovleva, “Structure of martensite packets in engineering steels,” Fiz. Met. Metalloved. 66, 759–769 (1988).

    Google Scholar 

  8. Yu. G. Andreev, E. I. Zarkova, and M. A. Shtremel’, “Boundaries and subboundaries in packet martensite. I. Boundaries between crystals in packet,” Fiz. Met. Metalloved. No. 3, 161–167 (1990).

    Google Scholar 

  9. M. A. Shtremel’, Yu. G. Andreev, and D. A. Kozlov, “Structure and strength of lath martensite,” Metal Sci. Heat Treat. 41, 140–145 (1999).

    Article  Google Scholar 

  10. V. M. Schastlivtsev, “Structure and crystallography of the lath martensite of structural steels,” Russ. Metall. (Metally) 2001, 467–475 (2001).

    Google Scholar 

  11. S. Zaefferer, P. Romano, and F. Friedel, “EBSD as a tool to identify and quantify bainite and ferrite in low-alloyed Al-TRIP steels,” J. Microsc. 230, 499–508 (2008).

    Article  Google Scholar 

  12. S. Zaefferer, “A critical review of orientation microscopy in SEM and TEM,” Crystal Res. Technol. 46, 607–628 (2011).

    Article  Google Scholar 

  13. A. Kobler, A. Kashiwar, H. Hahn, and C. Kubel, “Combination of in situ straining and ACOM TEM: A novel method for analysis of plastic deformation of nanocrystalline metals,” Ultramicroscopy 128, 68–81 (2013).

    Article  Google Scholar 

  14. A. Albou, M. Galceran, K. Renard, S. Godet, and P. J. Jacques, “Nanoscale characterization of the evolution of the twin-matrix orientation in Fe–Mn–C twinning-induced plasticity steel by means of transmission electron microscopy orientation mapping,” Scr. Mater. 68, 400–403 (2013).

    Article  Google Scholar 

  15. A. I. Stepanov, I. N. Ashikhmina, K. I. Sergeeva, S. V. Belikov, S. A. Musikhin, M. S. Karabanalov, and A. A. Al’-Katavi, “Structure and properties of low-alloy Cr–Mo–V steel after austenitization in the intercritical temperature range,” Steel Transl. 44, 469–473 (2014).

    Article  Google Scholar 

  16. G. M. Rusakov, M. L. Lobanov, A. A. Redikul’tsev, and A. S. Belyaevskikh, “Special misorientations and textural heredity in the commercial alloy Fe–3% Si,” Phys. Met. Metallogr. 115, 775–785 (2014).

    Article  Google Scholar 

  17. Ehab El-Danaf, Muneer Baig, Abdulhakim Almajid, Waleed Alshalfan, Marawan Al-Mojil, and Saeed Al-Shahrani, “Mechanical, microstructure and texture characterization of API X65 steel,” Mater. Des. 47, 529–538 (2013).

    Article  Google Scholar 

  18. Xiaolong Yang, Yun-bo Xu, Xiao-dong Tan, and Di Wu, “Influences of crystallography and delamination on anisotropy of charpy impact toughness in API X100 pipeline steel,” Mater. Sci. Eng., A 607, 53–62 (2014).

    Article  Google Scholar 

  19. I. Pyshmintsev, A. Gervasyev, R. H. Petrov, V. Carretero Olalla, and L. Kestens, “Crystallographic texture as a factor enabling ductile fracture arrest in high strength pipeline steel,” Mater. Sci. Forum 702–703, 770–773 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Lobanov.

Additional information

Original Russian Text © M.L. Lobanov, G.M. Rusakov, A.A. Redikul’tsev, S.V. Belikov, M.S. Karabanalov, E.R. Struina, A.M. Gervas’ev, 2016, published in Fizika Metallov i Metallovedenie, 2016, Vol. 117, No. 3, pp. 266–271.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lobanov, M.L., Rusakov, G.M., Redikul’tsev, A.A. et al. Investigation of Special Misorientations in Lath Martensite of Low-Carbon Steel Using the Method of Orientation Microscopy. Phys. Metals Metallogr. 117, 254–259 (2016). https://doi.org/10.1134/S0031918X1603008X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X1603008X

Keywords

Navigation