Skip to main content
Log in

Calculations of the Probability of Positron Trapping by a Vacancy in a Metal and the Estimation of the Vacancy Contribution to the Work Function of Electrons and Positrons

  • Theory of Metals
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The probabilities of the localization of positrons in monovacancies of Al and Cu have been calculated as functions of the energy and temperature. The vacancy was simulated by a void with a radius equal to the radius of the Wigner—Seitz cell in the model of stable jellium. Using the Fermi—Dirac golden rule for transitions, the formula for the rate of positron trapping by a vacancy has been derived as the function of the positron energy. For the thermalized positrons, the rate of localization near the triple point proved to be, on the order of magnitude, close to the rate of annihilation. Within the framework of our previously proposed models, the contribution of vacancies to the work function of electrons and positrons has been demonstrated based on the example of Al. The physical situations where the vacancy effect can manifest have been considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Puska and R. M. Nieminen, “Theory of positrons in solids and on solid surfaces,” Rev. Mod. Phys. 66, 841–897 (1994).

    Article  Google Scholar 

  2. S. Mukherjee, M. P. Nadesalingam, P. Guagliardo, A. D. Sergeant, B. Barbiellini, J. F. Williams, N. G. Fazleev, and A. H. Weiss, “Auger-mediated sticking of positrons to surfaces: Evidence for a single-step transition from a scattering state to a surface image potential bound state,” Phys. Rev. Lett. 104, 247403 (2010).

    Article  Google Scholar 

  3. F. Tuomisto and I. Makkonen, “Defect identification in semiconductors with positron annihilation: Experiment and theory,” Rev. Mod. Phys. 85, 1583–1631 (2013).

    Article  Google Scholar 

  4. Z. Wang, S. Su, F. C.-C. Ling, W. Anwand, and A. Wagner, “Thermal evolution of defects in undoped zinc oxide grown by pulsed laser deposition,” J. Appl. Phys. 116, 033508 (2014).

    Article  Google Scholar 

  5. S. Hagiwara, C. Hu, and K. Watanabe, “Positron states at a lithium-adsorbed Al(100) surface: Two-component density functional theory simulation,” Phys. Rev. B: Condens. Matter Mater. Phys. 91, 115409 (2015).

    Article  Google Scholar 

  6. S. W. H. Eijt, A. van Veen, H. Schut, P. E. Mijnarends, A. B. Denison, B. Barbiellini, and A. Bansil, “Study of colloidal quantum-dot surfaces using an innovative thin-film positron 2D-ACAR method,” Nature Mater. 5, 23–26 (2006).

    Article  Google Scholar 

  7. A. V. Babich, P. V. Vakula, and V. V. Pogosov, “On the vacancy in a metal,” Phys. Solid State 56, 873–880 (2014).

    Article  Google Scholar 

  8. A. V. Babich, P. V. Vakula, and V. V. Pogosov, “On the positron in a metal,” Phys. Solid State, 56, 1726–1736 (2014).

    Article  Google Scholar 

  9. T. McMullen and M. J. Stott, “Resonance trapping of nonthermal positrons,” Phys. Rev. B: Condens. Matter 34, 8985–8988 (1986).

    Article  Google Scholar 

  10. M. J. Puska and M. P. Manninen, “Positron trapping rate into small vacancy clusters and light substitutional impurities,” J. Phys. F: Metal Phys. 17, 2235–2248 (1987).

    Article  Google Scholar 

  11. J. P. Perdew, H. Q. Tran, and E. D. Smith, “Stabilized jellium: Structureless pseudopotential model for the cohesive and surface properties of metals,” Phys. Rev. B: Condens. Matter 42, 11627–11636 (1990).

    Article  Google Scholar 

  12. I. T. Iakubov, A. G. Khrapak, V. V. Pogosov, and S. A. Trigger, “The surface tension of liquid metals and its temperature dependence,” Solid State Comm. 56, 709–712 (1985).

    Article  Google Scholar 

  13. K. O. Jensen and A. B. Walker, “Positron thermalization and non-thermal trapping in metals,” J. Phys.: Condens. Matter 2, 9757–9775 (1990).

    Google Scholar 

  14. S. W. Tam, S. K. Sinha, and R. W. Siegel, “Theory of the temperature dependence of positron bulk life-times—Implications for vacancy formation enthalpy measurements via positron experiments,” J. Nucl. Mater. 69/70, 596–599 (1977).

    Article  Google Scholar 

  15. M. J. Fluss, L. C. Smedskjaer, M. K. Chason, D. J. Legnini, and R. W. Siegel, “Measurements of the vacancy formation enthalpy in aluminum using positron annihilation spectroscopy,” Phys. Rev. B: Solid State 17, 3444–3455 (1978).

    Article  Google Scholar 

  16. V. V. Pogosov, A. V. Babich, P. V. Vakula, and A. G. Kravtsova, “On the positron work function for a metal with a dielectric coating,” Tech. Phys. 56, 1689–1690 (2011).

    Article  Google Scholar 

  17. A. V. Babich and V. V. Pogosov, “Effect of dielectric coating on the electron work function and surface stress of a metal,” Surf. Sci. 603, 2393–2397 (2009).

    Article  Google Scholar 

  18. A. V. Babich and V. V. Pogosov, “Quantum metal film in the dielectric environment, Phys. Solid State 55, 196–204 (2013).

    Article  Google Scholar 

  19. V. V. Pogosov, A. V. Babich, and P. V. Vakula, “On the influence of the band structure of insulators and image forces on the spectral characteristics of metal–insulator film systems,” Phys. Solid State 55, 2120–2123 (2013).

    Article  Google Scholar 

  20. A. N. Orlov and Yu. V. Trushin, Energies of Point Defects (Energoatomizdat, Moscow, 1983) [in Russian].

    Google Scholar 

  21. E. M. Gullikson and A. P. Mills, Jr., “Positron deformation potential and the temperature dependence of the electron and positron work functions,” Phys. Rev. B: Condens. Matter 35, 8759–8762 (1987).

    Article  Google Scholar 

  22. T. Durakiewicz, A. J. Arko, J. J. Joyce, D. P. Moore, and S. Halas, “Thermal work function shifts for polycrystalline metal surfaces,” Surf. Sci. 478, 72–82 (2001).

    Article  Google Scholar 

  23. N. T. Gladkikh, A. P. Kryshtal’, and S. I. Bogatyrenko, “Melting temperature of nanoparticles and the energy of vacancy formation in them,” Tech. Phys. 55, 1657–1660 (2010).

    Article  Google Scholar 

  24. W. H. Qi and M. P. Wang, “Vacancy formation energy of small particles,” J. Mater. Sci. 39, 2529–2530 (2004).

    Article  Google Scholar 

  25. W. A. de Heer, “The physics of simple metal clusters: Experimental aspects and simple models,” Rev. Mod. Phys. 65, 611–676 (1993).

    Article  Google Scholar 

  26. P. M. Tomchuk and R. D. Fedorovich, “Conductivity of thin metal films with an island structure,” Fiz. Tverd. Tela 8, 276–281 (1966).

    Google Scholar 

  27. R. D. Fedorovich, A. G. Naumovets, and P. M. Tomchuk, “Electron and light emission from island metal films and generation of hot electrons in nanoparticles,” Phys. Rep. 328, 73–179 (2000).

    Article  Google Scholar 

  28. A. V. Babich and V. V. Pogosov, “Effects of electron levels broadening and electron temperature in tunnel structures based on metal nanoclusters,” Surf. Sci. 604, 210–216 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Pogosov.

Additional information

Original Russian Text © A.V. Babich, V.V. Pogosov, V.I. Reva, 2016, published in Fizika Metallov i Metallovedenie, 2016, Vol. 117, No. 3, pp. 215–223.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babich, A.V., Pogosov, V.V. & Reva, V.I. Calculations of the Probability of Positron Trapping by a Vacancy in a Metal and the Estimation of the Vacancy Contribution to the Work Function of Electrons and Positrons. Phys. Metals Metallogr. 117, 205–213 (2016). https://doi.org/10.1134/S0031918X16020034

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X16020034

Keywords

Navigation