Skip to main content
Log in

Interaction of dislocation tripoles with a standing sound wave

  • Strength and Plasticity
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The dynamics of the motion of various dislocation tripoles under the effect of a monochromatic standing sound wave has been studied using numerical modeling. Stable configurations of the tripoles that are in drift motion have been found and mutual transitions between these configurations have been investigated. The dependence of the velocity of drift on the frequency and the amplitude of the external effect have been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. H. Westmacott and B. Langeneker, “Dislocation structure in ultrasonically irradiated aluminum,” Phys. Rev. Lett. 14, 221–225 (1965).

    Article  Google Scholar 

  2. N. A. Tyapunina, E. K. Naimi, and G. M. Zinenkova, Action of Ultrasound on Crystals with Defects (Mos. Gos. Univ, Moscow, 1999) [in Russian].

    Google Scholar 

  3. V. P. Severdenko, V. V. Klubovich, and A. V. Stepanenko, Treatment of Metals by Pressure and Ultrasound (Nauka i tekhnika, Minsk, 1973) [in Russian].

    Google Scholar 

  4. A. V. Kulemin, Ultrasound and Diffusion in Metals (Metallurgiya, Moscow, 1978) [in Russian].

    Google Scholar 

  5. O. V. Abramov, Action of Strong Ultrasound on Liquid and Solid Metals (Nauka, Moscow, 2000) [in Russian].

    Google Scholar 

  6. S. V. Kovsh, V. A. Kotko, I. G. Polotskii, G. I. Prokopenko, V. I. Trefilov, and S. A. Firstov, “Action of ultrasound on the dislocation structure and mechanical properties of molybdenum,” Fiz. Met. Metalloved. 35, 1199–1205 (1973).

    Google Scholar 

  7. G. V. Bushueva, G. M. Zinenkova, N. A. Tyapunina, V. T. Degtyarev, A. Yu. Losev, and F. A. Plotnikova, “Self-organization of dislocations in an ultrasonic field,” Crystal. Rep. 53, 474–479 (2008).

    Article  Google Scholar 

  8. I. G. Polotskii, V. F. Belostotskii, and O. N. Kashevskaya, “Action of ultrasonic irradiation on nickel single-crystal hardness,” Fiz. Khim. Obr. Mater., No. 4, 152–155 (1971).

    Google Scholar 

  9. A. I. Lotkov, A. A. Baturin, V. N. Grishkov, Zh. G. Kovalevskaya, and P. V. Kuznetsov, “Effect of ultrasonic plastic treatment on the surface structure and phase state of titanium nickelide,” Tech. Phys. Lett. 31, 912–914 (2005).

    Article  Google Scholar 

  10. V. K. Astashev, V. L. Krupenin, V. N. Perevezentsev, L. V. Kolik, and N. A. Andrianov, “Properties of surface layers nanostructured by autoresonant ultrasonic turning,” J. Machin. Manufact. Reliab. 5, 463–466 (2011).

    Article  Google Scholar 

  11. Y. Wang, W. Znao, G. Li, and R. Liu, “Effects of ultrasonic treatment on the structure and properties of Zr-based bulk metallic glasses,” J. Alloys Compd. 544, 46–49 (2012).

    Article  Google Scholar 

  12. A. V. Mats, V. M. Netesov, V. I. Sokolenko, and K. V. Kovtun, “Relaxation effects in the strained hafnium at an ultrasonic action,” Vopr Atom. Nauki Tekh., Ser. Fiz. Radiatsd. Povrezhd. Rad. Materialoved., No. 4, 167–169 (2009).

    Google Scholar 

  13. A. A. Samigullina, R. R. Mulyukov, A. A. Nazarov, A. A. Mukhametgalina, Yu. V. Tsarenko, and V. V. Rubanik, “The increase in the impact toughness of ultrafine-grained nickel after ultrasonic treatment,” Pis’ma Mater. 4, 52–54 (2014).

    Google Scholar 

  14. A. A. Nazarova, R. R. Mulyukov, V. V. Rubanik, Yu. V. Tsarenko, and A. A. Nazarov, “Effect of ultrasonic treatment on the structure and properties of ultrafine-grained nickel,” Phys. Met. Metallogr. 110, 574–581 (2010).

    Article  Google Scholar 

  15. A. A. Samigullina, Yu. V. Tsarenko, V. V. Rubanik, V. A. Popov, V. N. Danilenko, and R. R. Mulyukov, “Effect of ultrasonic treatment on structure and mechanical properties of ultrafinegrained nickel processed by equal-channel angular pressing,” Pis’ma Mater. 2, 214–217 (2012).

    Google Scholar 

  16. A. V. Mats, V. M. Netesov, and V. I. Sokolenko, “Ultrasonic action on Zr–2.5% Nb alloy structure,” Vopr. Atom. Nauki Tekhn., No. 4, 108–110 (2011) [in Russian].

    Google Scholar 

  17. A. L. Lomakin, Multiplication of dislocations under dynamic loading in an inhomogeneous field of internal stresses in crystals, Extended Abstract of Candidate’s Dissertation in Mathematics and Physics, Moscow, MGU, 1987.

    Google Scholar 

  18. Kh. Khristu, On the Formation of Dipoles and Multidipoles under the effectof Ultrasound, Extended Abstract of Candidate’s Dissertation in Mathematics and Physics, Moscow, MGU, 1991.

    Google Scholar 

  19. G. M. Zinenkova, A. L. Lomakin, and Kh. Khristu, Computer Modeling of Structural Defects in Crystals (Fiz. Tekhn. Inst., Leningrad, 1988) [in Russian].

    Google Scholar 

  20. N. A. Tyapunina, A. L. Lomakin, and Kh. Khristu, “Dynamic structures of dislocation dipoles under ultrasound action,” Fiz. Tverd. Tela 32, 1097–1101 (1990).

    Google Scholar 

  21. A. I. Fokin and Sh. Kh. Khannanov, “Numerical study of the motion of dislocation tripoles under the action of oscillating stresses,” in Numerical Methods in Applied Mathematics. Collection of Papers (BFAN SSSR, Ufa, 1985), p.111[in Russian].

    Google Scholar 

  22. A. A. Nazarov and Sh. Kh. Khannanov, “Ultrasonic stimulation of polygonization process,” Fiz. Khim. Obrab. Mater., No. 4, 109–114 (1986).

    Google Scholar 

  23. V. V. Blagoveshchenskii and I. G. Panin, “Effect of ultrasound on deformation of crystalline materials,” Phys. Solid State 53, 2112–2116 (2011).

    Article  Google Scholar 

  24. V. T. Degtyarev, “Dislocation ensemble self-organization in ultrasonic field,” Mater. Elektron. Tekhn. Izv. Vyssh. Uchebn. Zaved., No. 1, 34–37 (2004).

    Google Scholar 

  25. V. T. Degtyarev, A. Yu. Losev, F. A. Plotnikov, and N. A. Tyapunina, “Polygonization in ultrasonic field,” Izv. Ross. Akad. Nauk., Ser. Fiz. 68, 1516–1517 (2004).

    Google Scholar 

  26. V. T. Degtyarev, A. Yu. Losev, and F. A. Plotnikov, “Dynamic dislocation structures in ultrasonic field: Dipoles and tripoles,” Materialovedenie, No. 7, 8–12 (2004).

    Google Scholar 

  27. V. T. Degtyarev, A. Yu. Losev, and F. A. Plotnikov, “Redistribution of disordered dislocation ensembles in ultrasonic field,” Naukoemkie Tekhn., Nos. 3–4, 5–7 (2005).

    Google Scholar 

  28. A. N. Orlov, Introduction to the Theory of Defects in Crystals (Vysshaya Shkola, Moscow, 1983) [in Russian].

    Google Scholar 

  29. J. P. Hirth and J. Lothe, Theory of Dislocations (McGraw-Hill, New York, 1968; Atomizdat, Moscow, 1972).

    Google Scholar 

  30. A. A. Nazarova, S. V. Dmitriev, A. I. Pshenichnyuk, and R. R. Mulyukov, “Resonance interaction of an edgedislocation wall with a traveling sound wave,” Phys. Solid State 52, 2490–2495 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. T. Murzaev.

Additional information

Original Russian Text © R.T. Murzaev, D.V. Bachurin, A.A. Nazarov, 2015, published in Fizika Metallov i Metallovedenie, 2015, Vol. 116, No. 10, pp. 1112–1120.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murzaev, R.T., Bachurin, D.V. & Nazarov, A.A. Interaction of dislocation tripoles with a standing sound wave. Phys. Metals Metallogr. 116, 1057–1065 (2015). https://doi.org/10.1134/S0031918X15100105

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X15100105

Keywords

Navigation