Skip to main content
Log in

On the effect of nonequilibrium vacancies on the melting and pore formation in ultrafine-grained aluminum alloys subjected to pulsed laser irradiation

  • Structure, Phase Transformations, and Diffusion
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

An analysis has been carried out of the experimental data concerning the interaction of pulsed laser radiation with the ultrafine-grained (UFG) Al-Mg alloys obtained by the methods of severe plastic deformation. It has been shown that the melting and pore formation in the UFG alloys under the effect of laser radiation start earlier than in their coarse-grained analogs. The observed behavior of the alloys can be explained from the united positions based on the concepts of the influence of the high concentration of nonequilibrium vacancies on the ability of the alloys to absorb the laser radiation and on the process of pore formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Z. Valiev and I. V. Aleksandrov, Bulk Nanostructured Metallic Materials (Akademkniga, Moscow, 2007) [in Russian].

    Google Scholar 

  2. P. Yu. Kikin, V. N. Perevezentsev, A. I. Pchelintsev, and E. E. Rusin, “Effect of ultrafine-grained structure on the regime of laser drilling in aluminum alloy 1420,” Tech. Phys. Lett. 32, 845–846 (2006).

    Article  Google Scholar 

  3. P. Yu. Kikin, V. N. Perevezentsev, A. I. Pchelintsev, and E. E. Rusin, “Treatment of ultrafine-grained aluminum alloys by pulsed laser radiation,” Probl. Mashinostr. Nadezhnosti Mash., No. 5, 87–91 (2007).

    Google Scholar 

  4. P. Yu. Kikin, A. I. Pchelintsev, and E. E. Rusin, “Time shift of the melting and evaporation points in ultrafinegrained aluminum alloy under laser heating,” Fiz. Khim. Obrab. Mater., no. 2, 50–53 (2009).

    Google Scholar 

  5. P. Yu. Kikin, A. I. Pchelintsev, E. E. Rusin, and M. Yu. Shcherbans, “Laser-induced structural changes in fine-grained aluminum 1420 alloy,” Tech. Phys. Lett. 32, 1–2 (2006).

    Article  Google Scholar 

  6. P. Yu. Kikin, A. I. Pchelintsev, and E. E. Rusin, “Effect of annealing on the shift of the time of the start of fusion in submicrocrystalline aluminum alloy 1421 under laser radiation,” Metalloved. Term. Obrab. Met., No. 12, 24–26 (2010).

    Google Scholar 

  7. P. Yu. Kikin, V. N. Perevezentsev, E. E. Rusin, and E. N. Razov, “Effect of preliminary low-energy laser irradiation on the melting of aluminum alloys,” Tech. Phys. 57, 203–206 (2012).

    Article  Google Scholar 

  8. P. Yu. Kikin, A. I. Pchelintsev, E. E. Rusin, and N. V. Zemlyakova, “Effect of low-energy pulse laser irradiation on the properties of ultrafine-grained aluminum alloy 1421,” Metal Sci. Heat Treat. 54, 398–401 (2012).

    Article  Google Scholar 

  9. P. Yu. Kikin and E. E. Rusin, “Effect of preliminary low-energy laser irradiation on the time of the hole formationin 1421-type aluminum alloy under subsequent high-intense laser exposure,” Fiz. Khim. Obrab. Mater., No. 2, 16–18 (2013).

    Google Scholar 

  10. P. Yu. Kikin, A. I. Pchelintsev, and E. E. Rusin, “Effect of annealing on preliminary treatment of aluminum alloy 1421 by low-energy laser pulses,” Metal Sci. Heat Treat. 55, 368–369 (2013).

    Article  Google Scholar 

  11. P. Yu. Kikin, V. N. Perevezentsev, E. E. Rusin, and E. N. Razov, “Growth and fracture of oxide film on Al alloy surface under low-energy laser impact,” Fiz. Khim. Obrab. Mater., No. 1, 10–15 (2012).

    Google Scholar 

  12. M. Yu. Murashkin, A. R. Kil’mametov, and R. Z. Valiev, “Structure and mechanical properties of an aluminum alloy 1570 subjected to severe plastic deformation by high-pressure torsion,” Phys. Met. Metallogr. 106, 90–97 (2008).

    Article  Google Scholar 

  13. A. N. Orlov, V. N. Perevezentsev, and V. V. Rybin, Grain Boundaries in Metals (Metallurgiya, Moscow, 1980) [in Russian].

    Google Scholar 

  14. I. N. Fridlyander, V. S. Sandler, T. I. Nikol’skaya, R. A. Savinkov, and I. N. Roshchin, “Study of nearsurface layer of 1420 aluminum alloy,” Izv. Akad. Nauk SSSR, Met., No. 2, 220–222 (1978).

    Google Scholar 

  15. I. N. Fridlyander, V. S. Sandler, and T. I. Nikol’skaya, “Peculiarities of structure and properties of aluminum 1420 alloy,” Metalloved. Term. Obrab. Met., no. 2, 20–22 (1983).

    Google Scholar 

  16. K. Higashi, “Positive exponent superplasticity in metallic alloys and composites,” in Superplasticity: 60 Years after Pearson (Bourne, UK, 1995), pp. 93–102.

    Google Scholar 

  17. Damask, A.C. and Dienes, G.J., Point Defects in Metals (Gordon and Breach, New York, 1963).

    Google Scholar 

  18. A. V. Sokolov, Optical Properties of Metals (Fizmatgiz, Moscow, 1961) [in Russian].

    Google Scholar 

  19. V. A. Bobyrev, V. I. Boiko, F. V. Bunkin, and E. R. Tsarev, “Generation and annealing of non-equilibrium defects under the laser radiation action,” Izv. Akad. Nauk SSSR, Ser. Fiz. 51, 1180–1190 (1987).

    Google Scholar 

  20. Oxidation of Metals, Ed. by J. M. Benar (Metallurgiya, Moscow, 1968) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Perevezentsev.

Additional information

Original Russian Text © P.Yu. Kikin, V.N. Perevezentsev, E.E. Rusin, 2015, published in Fizika Metallov i Metallovedenie, 2015, Vol. 116, No. 8, pp. 854–860.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kikin, P.Y., Perevezentsev, V.N. & Rusin, E.E. On the effect of nonequilibrium vacancies on the melting and pore formation in ultrafine-grained aluminum alloys subjected to pulsed laser irradiation. Phys. Metals Metallogr. 116, 810–816 (2015). https://doi.org/10.1134/S0031918X15080086

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X15080086

Keywords

Navigation