Skip to main content
Log in

Molecular-dynamic investigation of the interaction of vacancies with symmetrical tilt grain boundaries in aluminum

  • Structure, Phase Transformations, and Diffusion
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The molecular-dynamic method has been used to study the interaction of lattice vacancies with symmetrical grain boundaries (GBs) in aluminum. The fraction of trapped vacancies has been found to depend linearly on the distance to the GB plane. The average velocity of the vacancy migration toward the boundary decreases exponentially with an increase in the distance between the GB plane and vacancy. The radius of the region of trapping of a vacancy by the boundary is limited to two to three lattice parameters and grows with an increase in temperature. Four types of boundaries, which are characterized by different capability for the trapping of vacancies, have been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. W. Siegel, S. M. Chang, and R. W. Balluffi, “Vacancy loss at grain boundaries in quenched polycrystalline gold,” Acta Metall. 28, 249–257 (1980).

    Article  Google Scholar 

  2. V. V. Pokropivnyi and V. V. Yagodkin, “Modeling of vacancy interaction with special tilt boundaries in bcc lattice,” Fiz. Met. Metalloved. 56, 392–396 (1983).

    Google Scholar 

  3. V. V. Gorbunov and B. M. Darinskii, “Emitting of vacancies by an intercrystallite boundary,” Fiz. Tverd. Tela 34, 1059–1063 (1992).

    Google Scholar 

  4. H. Gleiter, “Grain boundaries as point defect sources or sinks-Diffusional creep,” Acta Metall. 27, 187–192 (1979).

    Article  Google Scholar 

  5. B. F. Dem’yanov, E. L. Grakhov, and M. D. Starostenkov, “Interaction of vacancies with special grain boundaries in aluminum,” Phys. Met. Metallogr., 88, 243–248 (1999).

    Google Scholar 

  6. A. Suzuki and Y. Mishin, “Atomistic modeling of point defects and diffusion in copper grain boundaries,” Interf. Sci. 11, 131–148 (2003).

    Article  Google Scholar 

  7. G. Lu and N. Kioussis, “Interaction of vacancies with a grain boundary in aluminum: A first-principles study,” Phys. Rev. B: Condens. Matter Mater. Phys. 64, 024101 (2001).

    Article  Google Scholar 

  8. R. T. Murzaev and A. A. Nazarov, “Energy of vacancy formation in [001] tilt boundaries in nickel: A computer simulation,” Phys. Met. Metallogr., 100, 228–234 (2005).

    Google Scholar 

  9. R. T. Murzaev and A. A. Nazarov, “Activation energy for vacancy migration in [001] tilt boundaries in nickel,” Phys. Met. Metallogr., 101, 86–92 (2006).

    Article  Google Scholar 

  10. A. V. Weckman, A. S. Dragunov, B. F. Dem’yanov, and N. V. Adarich, “Energy spectrum of tilt grain boundaries in copper,” Russ. Phys. J. 55, 799–706 (2012).

    Article  Google Scholar 

  11. V. G. Weiser, “Application of the Morse potential function to cubic metals,” Phys. Rev. 114, 687–790 (1959).

    Article  Google Scholar 

  12. M. W. Finnis and J. E. Sinclair, “A simple empirical N-body potential for transition metals,” Philos. Mag. A 50, 45–55 (1984).

    Article  Google Scholar 

  13. S. M. Foiles, M. I. Baskes, and M. S. Daw, “Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys,” Phys. Rev. B: Condens. Matter 33 7983–7991 (1986).

    Article  Google Scholar 

  14. A. F. Voter and S. P. Chen, “Accurate interatomic potentials for Ni, Al and Ni3Al,” Mater. Res. Soc. Symp. Proc. 82, 175–181 (1987).

    Article  Google Scholar 

  15. D. Wolf, “Correlation between the energy and structure of grain boundaries in bcc metals. 1. Symmetrical boundaries on the (110) and (100) planes,” Philos. Mag. B. 59, 667–680 (1989).

    Article  Google Scholar 

  16. S. J. Plimpton and E. D. Wolf, “Effect of interatomic potential on simulated grain boundary and bulk diffusion: A molecular-dynamic study,” Phys. Rev. B: Condens. Matter 41, 2712–2721 (1990).

    Article  Google Scholar 

  17. V. Vitek and S. P. Chen, “Modeling of grain boundary structures and properties in intermetallic compounds,” Scr.Metall. 32, 1237–1242 (1991).

    Article  Google Scholar 

  18. E. V. Kozlov, L. E. Popov, and M. D. Starostenkov, “Calculation of Morse potentials for solid gold,” Izv. Vyssh. Uchebn. Zaved., Fiz., No. 3, 107–108 (1972).

    Google Scholar 

  19. M. A. Baranov, Energy of formation and atomic configurations of plane and point defects in ordered bcc alloys, Doctoral (Phys.-Math.) Dissertation, Altaiskii Gos. Tekhn. Univ., Barnaul (1999).

    Google Scholar 

  20. A. S. Dragunov, B. F. Dem’yanov, and A. V. Weckman, “Energy of symmetric tilt grain boundaries in aluminum,” Polzunov. Alman. 2(3), 133–135 (2009).

    Google Scholar 

  21. B. F. Dem’yanov, A. S. Dragunov, and A. V. Weckman, “Mechanisms of self-diffusion along grain boundaries in aluminum,” Izv. Altaisk. Gos. Univ., No. 1/2 (65) 158–161 (2010).

    Google Scholar 

  22. A. S. Dragunov, B. F. Dem’yanov, and A. V. Weckman, “Modeling of diffusion processes in metallic crystals containing a tilt grain boundary by molecular-dynamics method,” Svidet. Gos. Registratsii Programmy dlya EVM, No. 2009612475 (registered 18.05.09).

  23. A. N. Orlov, V. N. Perevezentsev, and V. V. Rybin, Grain Boundaries in Metals (Metallurgiya, Moscow, 1980) [in Russian].

    Google Scholar 

  24. A. S. Dragunov, B. F. Dem’yanov, and A. V. Weckman, “Computer simulation of internal interfaces in metals and alloys,” Izv. Vyssh. Uchebn. Zaved., Fiz. 53(3-2), 82–87 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Dragunov.

Additional information

Original Russian Text © A.V. Weckman, B.F. Demyanov, A.S. Dragunov, 2015, published in Fizika Metallov i Metallovedenie, 2015, Vol. 116, No. 6, pp. 621–626.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weckman, A.V., Demyanov, B.F. & Dragunov, A.S. Molecular-dynamic investigation of the interaction of vacancies with symmetrical tilt grain boundaries in aluminum. Phys. Metals Metallogr. 116, 586–591 (2015). https://doi.org/10.1134/S0031918X15060113

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X15060113

Keywords

Navigation