Skip to main content
Log in

Atomistic modeling of the self-diffusion in γ-U and γ-U-Mo

  • Structure, Phase Transformations, and Diffusion
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Results of investigations of the self-diffusion in gamma-uranium and metallic U-Mo alloys are presented. Calculations are performed using the method of atomistic modeling with the help of interatomic potentials based on the embedded-atom model and its modifications. Proposed potentials are verified by calculating thermodynamic and mechanical properties of uranium and U-Mo alloys. The formation energies of point defects and atomic diffusivities due to the diffusion of defects are calculated for gamma-uranium and alloy containing 9 wt % molybdenum. Self-diffusion coefficients of uranium and molybdenum are evaluated. Based on the data obtained, it has been concluded that the experimentally observed features of the self-diffusion in gamma-uranium can be explained by the prevalence of the interstitial mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Chernov, V. A. Romanov, and A. O. Krutskikh, “Atomic mechanisms and energetics of thermally activated processes of helium redistribution in vanadium,” J. Nucl. Mater. 271-272, 274–279 (1999).

    Article  Google Scholar 

  2. B. D. Wirth, “Materials science. How does radiation damage materials?“ Science 318(5852), 923–924 (2007).

    Article  Google Scholar 

  3. Physical Material Science, Ed. by B. A. Kalin (Mos. Inzh.-Fiz. Inst., Moscow, 2008), Vol. 6, part 2 [in Russian].

    Google Scholar 

  4. S. Starikov, Z. Insepov, J. Rest, A. Y. Kuksin, G. Norman, V. Stegailov, and A. Yanilkin, “Radiation-induced damage and evolution of defects in Mo,” Phys. Rev. B: Condens. Matter Mater. Phys. 84, 104109 (2011).

    Article  Google Scholar 

  5. V. V. Dremov, F. A. Sapozhnikov, G. V. Ionov, A. V. Karavaev, M. A. Vorobyova, and B. W. Chung, “MD simulations of phase stability of PuGa alloys: Effects of primary radiation defects and helium bubbles,” J. Nucl. Mater. 440, 278–282 (2013).

    Article  Google Scholar 

  6. G. D. Samolyuk, S. I. Golubov, Y. N. Osetsky, and R. E. Stoller, “Self-interstitial configurations in hcp Zr: A first principles analysis,” Philos. Mag. Lett. 93, 93–100 (2013).

    Article  Google Scholar 

  7. E. P. Pakhomov, “Defect structure and the phase diagram of uranium dioxide,” High Temper. 51, 215–223 (2013).

    Article  Google Scholar 

  8. Y. Adda and A. Kirianenko, “Etude de l’autodiffusion de l’uranium en phase γ,” J. Nucl. Mater. 1, 120–126 (1959).

    Article  Google Scholar 

  9. S. J. Rothman, L. T. Lloyd, and A. L. Harkness, “Self-diffusion in γ uranium,” Trans. Metall. Soc. AIME 218, 605–612 (1960).

    Google Scholar 

  10. Y. Adda and A. Kirianenko, “Etude de l’autodiffusion de l’uranium en phase α,” J. Nucl. Mater 6, 130–134 (1962).

    Article  Google Scholar 

  11. G. B. Fedorov and E. A. Smirnov, Diffusion in the Materials for Nuclear Reactors (Atomizdat, Moscow, 1978) [In Russian].

    Google Scholar 

  12. E. A. Smirnov and K. E. Smirnov, “Diffusion processes in bcc phases of actinides,” Preprint No. MIFI-013092 (Moscow Eng.-Phys. Inst., 1992).

    Google Scholar 

  13. Y. Liu, D. Yu, Y. Du, G. Sheng, Z. Long, J. Wang, and L. Zhang, “Atomic mobilities, diffusivities and their kinetic implications for U-X (X = Ti, Nb and Mo) bcc alloys,” Calphad 37, 49–56 (2012).

    Article  Google Scholar 

  14. V. Sinha, P. Hegde, G. Prasad, G. Dey, and H. Kamath, “Phase transformation of metastable cubic γ-phase in UMo alloys,” J. Alloys Compd. 506, 253–262 (2010).

    Article  Google Scholar 

  15. V. Baranov, V. Nechaev, B. Produvalov, and D. Shornikov, “Interaction of uranium-molybdenum fuel with an aluminum matrix with deep burnup,” At. Energ. 108, 349–356 (2010).

    Article  Google Scholar 

  16. A. V. Vatulin, A. V. Morozov, V. B. Suprun, Yu. I. Petrov, and Yu. I. Trifonov, “Radiation resistance of high-density uranium-molybdenum dispersion fuel for nuclear research reactors,” At. Energ. 100, 37–46 (2006).

    Article  Google Scholar 

  17. W. Kohn, “Electronic structure of matter-Wave functions and density functionals,” Nobel lecture, 1999. http://www.nobelprize.org/nobel-prizes/chemistry/laureates/1998/kohn-lecture.pdf

    Google Scholar 

  18. W. Xiong, W. Xie, C. Shen, and D. Morgan, “Thermodynamic modeling of the U-Zr system-A revisit,” J. Nucl. Mater. 443, 331–341 (2013).

    Article  Google Scholar 

  19. A. V. Evteev, A. V. Levchenko, I. V. Belova, and G. E. Murch, “Molecular dynamics simulation of surface segregation diffusion and reaction phenomena in equiatomic Ni-Al systems,” Phys. Met. Metallogr. 113, 1202–1243 (2012).

    Article  Google Scholar 

  20. S. V. Starikov, “Atomic simulation of defect formation process in uranium dioxide upon fission-fragment flight,” Teplofiz. Vys. Temper. 53(1), (2015) (in press).

    Google Scholar 

  21. A. Yu. Kuksin, A. S. Rokhmanenkov, and V. V. Stegailov, “Atomic positions and diffusion paths of H and He in the α-Ti lattice,” Phys. Solid State 55, 367–372 (2013).

    Article  Google Scholar 

  22. I. I. Novoselov, A. Yu. Kuksin, and A. V. Yanilkin, “Diffusion coefficients of vacancies and interstitials along tilt grain boundaries in molybdenum,” Phys. Solid State 56, 1025–1032 (2014).

    Article  Google Scholar 

  23. D. E. Smirnova, S. V. Starikov, and V. V. Stegailov, “New interatomic potential for computation of mechanical and thermodynamic properties of uranium in a wide range of pressures and temperatures,” Phys. Met. Metallogr. 113, 107–116 (2012).

    Article  Google Scholar 

  24. D. E. Smirnova, S. V. Starikov, and V. V. Stegailov, “Interatomic potential for uranium in a wide range of pressure and temperature,” J. Phys.: Cond. Mater. 24, 015702 (2012).

    Google Scholar 

  25. D. E. Smirnova, A. Yu. Kuksin, S. V. Starikov, V. V. Stegailov, Z. Insepov, and J. Rest, “A ternary EAM interatomic potential for U-Mo alloys with xenon,” Model. Simul. Mater. Sci. Eng. 21, 035011 (2013).

    Article  Google Scholar 

  26. B. Beeler, C. Deo, M. Baskes, and M. Okunewski, “Atomistic properties of γ uranium,” J. Phys.: Condens. Matter. 24, 075401 (2012).

    Google Scholar 

  27. A. V. Yanilkin, Z. Insepov, G. E. Norman, J. Rest, and V. Stegailov, “Atomistic simulation of clustering and annihilation of point defects in molybdenum,” Defect Diffus. Forum 323-325, 95–100 (2012).

    Article  Google Scholar 

  28. M. S. Veshchunov, A. V. Boldyrev, V. D. Ozrin, V. E. Shestak, and V. I. Tarasov, “A new mechanistic code SFPR for modeling of single fuel rod performance under various regimes of LWR operation,” Nucl. Eng. Design 241, 2822–2830 (2011).

    Article  Google Scholar 

  29. M. Stan, “Multi-scale models and simulations of nuclear fuels,” Nucl. Eng. Technol. 41, 39–52 (2009).

    Article  Google Scholar 

  30. M. Daw and M. Baskes, “Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals,” Phys. Rev. B: Condens. Matter 29, 6443–6453 (1984).

    Article  Google Scholar 

  31. D. Schopf, P. Brommer, B. Frigan, and H.-R. Trebin, “Embedded atom method potentials for Al-Pd-Mn phases,” Phys. Rev. B: Condens. Matter Mater. Phys. 85, 054201 (2012).

    Article  Google Scholar 

  32. H. Park, M. R. Fellinger, T. J. Lenosky, W. W. Tipton, D. R. Trinkle, S. P. Rudin, C. Woodward, J. W. Wilkins, and R. G. Hennig, “Ab initio based empirical potential used to study the mechanical properties of molybdenum,” Phys. Rev. B: Condens. Matter Mater. Phys. 85, 214121 (2012).

    Article  Google Scholar 

  33. D. K. Belashchenko, D. E. Smirnova, and O. I. Ostrovskii, “Molecular-dynamic simulation of the thermophysical properties of liquid uranium,” High Temperature 48, 363–375 (2010).

    Article  Google Scholar 

  34. F. Ercolessi and J. B. Adams, “Interatomic potentials from first-principles calculations: The force-matching method,” Europhys. Lett. 26, 583–588 (1994).

    Article  Google Scholar 

  35. G. Ivanovskis, G. E. Norman, and D. R. Usmanova, “Anomalous diffusivity in ionic liquids: A molecular dynamics study,” Dokl. Phys. 57, 427–430 (2012).

    Article  Google Scholar 

  36. H. Mehrer, Diffusion in Solids, (Intellekt, Dolgoprudnyi, 2011) [in Russian].

    Google Scholar 

  37. S. Xiang, H. Huang, and L. Hsiung, “Quantum mechanical calculations of uranium phases and niobium defects in γ-uranium,” J. Nucl. Mater. 375, 113–119 (2008).

    Article  Google Scholar 

  38. B. Beeler, B. Good, S. Rashkeev, C. Deo, M. Baskes, and M. Okuniewski, “First principles calculations for defects in U,” J. Phys.: Condens. Matter. 22, 505703 (2010).

    Google Scholar 

  39. H. Matter, J. Winter, and W. Triftshauser, “Investigation of vacancy formation and phase transformations in uranium by positron annihilation,” J. Nucl. Mater. 88, 273–278 (1980).

    Article  Google Scholar 

  40. K. R. Lund, K. G. Lynn, M. H. Weber, and M. A. Okuniewski, “Vacancy formation enthalpy in polycrystalline depleted uranium,” J. Phys.: Conf. Ser. 443, 01202 (2013).

    Google Scholar 

  41. A. Yu. Kuksin and D. E. Smirnova, “Calculation of diffusion coefficients of defects and ions in UO2,” Phys. Solid State 56, 1214–1223 (2014).

    Article  Google Scholar 

  42. M. I. Mendelev and B. S. Bokstein, “Molecular dynamics study of selfdiffusion in Zr,” Philos. Mag. 90, 637–654 (2010).

    Article  Google Scholar 

  43. Y. Adda and A. Kirianenko, “Abaissement des coeffients d’autodiffusion de l’uranium en phase γ par des additions de molybdene, de zirconium ou de niobium,” J. Nucl. Mater. 6, 135–136 (1962).

    Article  Google Scholar 

  44. K. Huang, D. D. Keiser, Jr., and Y. Sohn, “Interdiffusion, intrinsic diffusion, atomic mobility, and vacancy wind effect in γ (bcc) uranium-molybdenum alloy,” Metall. Mater. Trans. A 44, 738–746 (2013).

    Article  Google Scholar 

  45. Y. Mishin, M. Mehl, and D. Papaconstantopoulos, “Phase stability in the Fe-Ni system: Investigation by first-principles calculations and atomistic simulations,” Acta Mater. 53, 4029–4041 (2005).

    Article  Google Scholar 

  46. G. Kresse, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B: Condens. Matter 54, 11169–11186 (1996).

    Article  Google Scholar 

  47. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jakson, M. R. Pederson, D. J. Singh, and C. Fiolhais, “Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation,” Phys. Rev. B: Condens. Matter 46, 6671–6687 (1992).

    Article  Google Scholar 

  48. A. Dwight, “The uranium-molybdenum equilibrium diagram below 900°C,” J. Nucl. Mater. 2, 81–87 (1960).

    Article  Google Scholar 

  49. D. Burkes, R. Prabhakaran, and J.-F. Jue, “Mechanical properties of DU-xMo alloys with x = 7 to 12 weight percent,” Metall. Mater. Trans. A 40, 1069–1079 (2009).

    Article  Google Scholar 

  50. R. McGeary, Development and Properties of Uranium-Based Alloys Resistant to Corrosion in High-Temperature Water, SAEC Report WAPD-127-part 1, 1955.

    Google Scholar 

  51. J. Bridge, C. Schwartz, and D. Vaughan, “X-ray diffraction determination of the coefficient of expansion of alpha-uranium,” Trans. AIME 206, 160–166 (1956).

    Google Scholar 

  52. V. Sinha, G. Prasad, P. Hegde, G. Dey, and H. Kamath, “Effect of molybdenum addition on metastability of cubic γ-uranium,” J. Alloys Compd. 491, 753–760 (2010).

    Article  Google Scholar 

  53. D. E. Burkes, C. A. Papesch, A. P. Maddison, T. Hartmann, and F. J. Rice, “Thermo-physical properties of DU-10 wt % Mo alloys,” J. Nucl. Mater. 403, 160–166 (2010).

    Article  Google Scholar 

  54. I. Tkach, N.-T. H. Kim-Ngan, S. Maskov, M. Dzevenko, L. Havela, A. Warren, C. Stitt, and T. Scott, “Characterization of cubic-phase uranium molybdenum alloys synthesized by ultrafast cooling,” J. Alloys Compd. 534, 101–109 (2012).

    Article  Google Scholar 

  55. T. Kutty, S. Dash, J. Banerjee, S. Kaity, A. Kumar, and C. Basak, “Thermophysical properties of U2Mo intermetallic,” J. Nucl. Mater. 420, 193–197 (2012).

    Article  Google Scholar 

  56. J. Akella, G. S. Smith, R. Grover, Y. Wu, and S. Martin, “Static EOS of uranium to 100 GPa pressure,” High. Pres. Res. 2, 295–302 (1990).

    Article  Google Scholar 

  57. C.-S. Yoo, H. Cynn, and P. Soderlind, “Phase diagram of uranium at high pressures and temperatures,” Phys. Rev. B: Condens. Matter Mater. Phys. 57, 10359–10362 (1998).

    Article  Google Scholar 

  58. A. Landa, P. Soderlind, and P. Turchi, “Density-functional study of U-Mo and U-Zr alloys,” J. Nucl. Mater. 414, 132–137 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. E. Smirnova.

Additional information

Original Russian Text © D.E. Smirnova, A.Yu. Kuksin, S.V. Starikov, V.V. Stegailov, 2015, published in Fizika Metallov i Metallovedenie, 2015, Vol. 116, No. 5, pp. 473–483.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnova, D.E., Kuksin, A.Y., Starikov, S.V. et al. Atomistic modeling of the self-diffusion in γ-U and γ-U-Mo. Phys. Metals Metallogr. 116, 445–455 (2015). https://doi.org/10.1134/S0031918X1503014X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X1503014X

Keywords

Navigation