Skip to main content
Log in

Role of the structure and texture in the realization of the recovery strain resource of the nanostructured Ti-50.26 at %Ni alloy

  • Strength and Plasticity
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

In this work, we have studied the nanostructure, the crystallographic texture, and the crystal lattice of the martensite of the Ti-50.26 at % Ni alloy subjected to a thermomechanical treatment, which includes cold rolling, warm (at 150°C) rolling, intermediate and post-deformation annealings (at 400°C) in different combinations. To calculate the resource of the recovery strain in the approximation of a polycrystal, we suggested and employed a method based on the sufficiently complete allowance for the orientation distribution function of the initial B2 austenite and on the assumption on the realization of the most favorable orientational variant of martensite in each grain. The calculated values of the resource of the recovery strain have been compared with the experimental data and have been analyzed along with the results of the determination of the recovery stresses and parameters of the loading-unloading diagram. Estimations have been made of the role of the structural and textural factors in the realization of the recovery strain of the nanostructured Ti-50.26 at % Ni alloy. To achieve the maximally high recovery strain, one should focus on obtaining a nanocrystalline structure in combination with a sharp texture, which ensures the maximum transformation deformation in the direction of tension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shape Memory Materials, Ed. by K. Otsuka and C. M. Wayman (Cambridge Univ., Cambridge, 1999).

    Google Scholar 

  2. Engineering Aspects of Shape Memory Alloys, Ed. by T. W. Duerig, K. N. Melton, D. Stockel, and C. M. Wayman (Butterworth-Heineman, London, 1990).

    Google Scholar 

  3. Shape Memory Alloys: Fundamentals, Modeling and Applications, V. Brailovski, S. Prokoshkin, P. Terriault, and F. Trochu, Eds. (ETS, Montreal, 2003).

    Google Scholar 

  4. S. D. Prokoshkin, V. G. Pushin, E. P. Ryklina, and I. Y. Khmelevskaya, “Application of titanium nickelide-based alloys in medicine,” Phys. Met. Metallogr. 97(Suppl. 1), S56–S96 (2004).

    Google Scholar 

  5. Alloys with Shape Memory and Their Application in Medicine, Ed. by L. A. Monasevich (Nauka, Novosibirsk, 1992) [in Russian].

    Google Scholar 

  6. V. Brailovski, S. D. Prokoshkin, K. E. Inaekyan, and V. Demers, “Functional properties of nanocrystalline, submicrocrystalline and polygonized Ti-Ni alloys processed by cold rolling and post-deformation annealing,” J. Alloys Compd. 509, 2066–2075 (2011).

    Article  Google Scholar 

  7. V. Brailovski, S. D. Prokoshkin, I. Yu. Khmelevskaya, K. E. Inaekyan, V. Demers, S. V. Dobatkin, and E. V. Tatyanin, “Structure and properties of the Ti-50.0 at % Ni alloy after strain hardening and nanocrystallizing thermomechanical processing,” Mater. Trans. 47, 795–804 (2006).

    Article  Google Scholar 

  8. S. D. Prokoshkin, V. Brailovski, S. Turenne, I. Y. Khmelevskaya, A. V. Korotitskiy, and I. V. Trubitsyna, “Concentration, temperature and deformation dependences of martensite lattice parameters in binary Ti-Ni shape memory alloys,” J. Phys. IV 112, 651–654 (2003).

    Google Scholar 

  9. S. D. Prokoshkin, V. Brailovski, K. E. Inaekyan, V. Demers, I. Yu. Khmelevskaya, S. V. Dobatkin, and E. V. Tatyanin, “Structure and properties of severely cold-rolled and annealed Ti-Ni shape memory alloys,” Mater. Sci. Eng., A 481–482, 114–118 (2008).

    Article  Google Scholar 

  10. S. D. Prokoshkin, V. Brailovski, I. Yu. Khmelevskaya, S. V. Dobatkin, J. E. Inaekyan, V. Yu. Turilina, V. Demers, and E. V. Tat’yanin, “Creation of substructure and nanostructure by thermomechanical treatment and control of properties of Ti-Ni alloys with shape memory effect,” Metal Sci. Heat Treatment 47, 182–187 (2005).

    Article  Google Scholar 

  11. S. D. Prokoshkin, V. Brailovski, S. Turenne, I. Yu. Khmelevskaya, A. V. Korotitskiy, and I. V. Trubitsyna, “On the lattice parameters of the B19 martensite in binary Ti-Ni shape memory alloys,” Phys. Met. Metallogr. 96, 55–64 (2003).

    Google Scholar 

  12. S. D. Prokoshkin, A. V. Korotitskiy, V. Brailovski, D. Turenne, I. Yu. Khmelevskaya, and I. B. Trubitsyna, “On the lattice parameters of phases in binary Ti-Ni shape memory alloys,” Acta Mater. 52, 4479–4492 (2004).

    Article  Google Scholar 

  13. E. P. Ryklina, S. D. Prokoshkin, and A. Yu. Kreytsberg, “Abnormally high recovery strain in Ti-Ni-based shape memory alloys,” J. Alloys Compd. 577(Suppl. 1) 255–258 (2013).

    Article  Google Scholar 

  14. S. D. Prokoshkin, A. V. Korotitskiy, V. Brailovski, K. E. Inaekyan, and S. M. Dubinskiy. “Crystal lattice of martensite and the reserve of recoverable strain of thermally and thermomechanically treated Ti-Ni shape-memory alloys,” Phys. Met. Metallogr. 112, 170–188 (2011).

    Article  Google Scholar 

  15. S. Miyazaki, S. Kimura, K. Otsuka, and Y. Suzuki, “The habit plane and transformation strains associated with martensitic transformation in Ti-Ni single crystals,” Scr. Metall. 18, 883–888 (1984).

    Article  Google Scholar 

  16. T. Saburi, M. Yoshida, and S. Nenno, “Deformation behavior of shape memory Ti-Ni alloy crystals,” Scr. Metall. 18, 363–366 (1984).

    Article  Google Scholar 

  17. T. E. Buchheit and J. A. Wert, “Modeling the effects of stress state and crystal orientation on the stress-induced transformation of NiTi single crystals,” Metall. Mater. Trans. A 25, 2383–2389 (1994).

    Article  Google Scholar 

  18. H. Inoue, N. Miwa, and N. Inakazu, “Texture and shape memory strain in TiNi alloy sheets,” Acta Mater. 44, 4825–4834 (1996).

    Article  Google Scholar 

  19. Y. C. Shu and K. Bhattacharya, “The influence of texture on the shape-memory effect in polycrystals,” Acta Mater. 46, 5457–5473 (1998).

    Article  Google Scholar 

  20. L. Zhao, P. F. Willemse, J. H. Mulder, J. Beyer, and W. Wei, “Texture development and transformation strain of a cold-rolled Ti50-Ni45-Cu5 alloy,” Scr. Mater. 39, 1317–1323 (1998).

    Article  Google Scholar 

  21. S. Miyazaki, K. Otsuka, and C. M. Wayman, “The shape memory mechanism associated with the martensitic transformation in Ti-Ni alloys. I. Self-accommodation,” Acta Metall. 37, 1873–1884 (1989).

    Article  Google Scholar 

  22. V. Demers, V. Brailovski, S. Prokoshkin, and K. Inaekyan, “Thermomechanical fatigue of nanostructured Ti-Ni shape memory alloys,” Mater. Sci. Eng., A 513514, 185–196 (2009).

    Article  Google Scholar 

  23. Y. Facchinello, V. Brailovski, T. Georges, S. D. Prokoshkin, and S. M. Dubinskiy, “Manufacturing of nanostructured Ti-Ni shape memory alloys by means of cold/warm rolling and annealing thermal treatment,” J. Mater. Proc. Technol. 212, 2294–2304 (2012).

    Article  Google Scholar 

  24. A. Kreitcberg, V. Brailovski, S. Prokoshkin, Y. Facchinello, K. Inaekyan, and S. Dubinskiy, “Microstructure and functional fatigue of nanostructured Ti-50.26 at % Ni alloy after thermomechanical treatment with warm rolling and intermediate annealing,” Mater. Sci. Eng., A 562, 118–127 (2013).

    Article  Google Scholar 

  25. A. Kreitcberg, V. Brailovski, S. D. Prokoshkin, and K. Inaekyan, “Influence of thermomechanical treatment on structure and crack propagation in nanostructured Ti-50.26 at. % Ni alloy,” Metallogr., Microstruct., Analysis 3, 46–57 (2014).

    Article  Google Scholar 

  26. H. J. Bunge, Texture Analysis in Materials Science Mathematical Methods (Butterworths, London, 1982).

    Google Scholar 

  27. S. D. Prokoshkin, V. Brailovski, A. V. Korotitskii, K. E. Inaekyan, and A. M. Glezer, “Specific features of the formation of the microstructure of titanium nickelide upon thermomechanical treatment including cold plastic deformation to degrees from moderate to severe,” Phys. Met. Metallogr. 110, 289–304 (2010).

    Article  Google Scholar 

  28. S. D. Prokoshkin, I. Y. Khmelevskaya, S. V. Dobatkin, I. B. Trubitsyna, E. V. Tatyanin, V. V. Stolyarov, and E. A. Prokofiev, “Alloy composition, deformation temperature, pressure and post-deformation annealing effects in severely deformed Ti-Ni based shape memory alloys,” Acta Mater. 53, 2703–2714 (2005).

    Article  Google Scholar 

  29. D. L. Holt, “Dislocation cell formation in metals,” J. Appl. Phys. 41, 3197–3201 (1970).

    Article  Google Scholar 

  30. M. L. Bernshtein, S. V. Dobatkin, L. M. Kaputkina, and S. D. Prokoshkin, Diagrams of Hot Deformation, Structure and Properties of Steels (Metallurgiya, Moscow, 1989) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Prokoshkin.

Additional information

Original Russian Text © A.Yu. Kreitcberg, S.D. Prokoshkin, V. Brailovski, A.V. Korotitskiy, 2014, published in Fizika Metallov i Metallovedenie, 2014, Vol. 115, No. 9, pp. 986–1008.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kreitcberg, A.Y., Prokoshkin, S.D., Brailovski, V. et al. Role of the structure and texture in the realization of the recovery strain resource of the nanostructured Ti-50.26 at %Ni alloy. Phys. Metals Metallogr. 115, 926–947 (2014). https://doi.org/10.1134/S0031918X14090087

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X14090087

Keywords

Navigation