Skip to main content
Log in

Effect of annealing on magnetostrictive characteristics of a grain-oriented electrical steel with ordinary and refined domain structure

  • Electrical and Magnetic Properties
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

We present the results of investigating the effect of annealing on the magnetostrictive characteristics of a grain-oriented electrical steel (GOES) with ordinary and refined domain structure. Not infrequently, the annealing of sheet samples leads to an increase in the electromagnetic induction B 100 and, simultaneously, to an enhancement in the specific electromagnetic losses P 1.7/50. In a GOES with a refined domain structure, the minimum absolute values of λ0-peak and λpeak-peak are observed before annealing. For these samples, after annealing, the magnetostrictive characteristics are impaired most severely. The mechanism for explaining this experimental fact has been suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Zaikova, I. E. Startseva, and B. N. Filippov, Domain Structure and Magnetic Properties of Electrotechnical Steels (Nauka, Moscow, 1992) [in Russian].

    Google Scholar 

  2. Z. Valković, “Effect of electrical steel grade on transformer core audible noise,” J. Magn. Magn. Mater. 133, 607–609 (1994).

    Article  Google Scholar 

  3. A. Ilo, H. Pfutzner, and T. Nakata, “Critical induction-A key quantity for the optimization of transformer core operation,” J. Magn. Magn. Mater. 215–216, 637–640 (2000).

    Article  Google Scholar 

  4. D. Snell, “Noise generated by model step lap core configurations of grain oriented electrical steel,” J. Magn. Magn. Mater. 320, 887–890 (2008).

    Article  Google Scholar 

  5. M. Yabumoto, S. Arai, R. Kawamata, M. Mizokami, and T. Kubota, “Recent development in grain-oriented electrical steel with low magnetostriction,” J. Mater. Eng. Perform. 6, 713–721 (1997).

    Article  Google Scholar 

  6. B. Weiser, H. Pfutzner, and J. Anger, “Relevance of magnetostriction and forces for the generation of audible noise of transformer cores,” IEEE Trans. Magn. 36, 3759–3777 (2000).

    Article  Google Scholar 

  7. M. L. Lobanov, G. M. Rusakov, and A. A. Redikul’tsev, “Electrotechnical anisotropic steel. Part 1. History of development,” Metal Sci. Heat Treat. 53, 326–332 (2011).

    Article  Google Scholar 

  8. M. L. Lobanov, G. M. Rusakov, and A. A. Redikul’tsev, “Electrotechnical anisotropic steel. Part 2. State-of-the-art,” Metal Sci. Heat Treat. 53, 355–359 (2011).

    Article  Google Scholar 

  9. L. S. Karenina, Yu. N. Dragoshanskii, R. B. Puzhevich, and G. S. Korzunin, “Effect of an electrical insulating coating on the efficiency of laser treatment of grain-oriented electrical steel,” Phys. Met. Metallogr. 112, 231–236 (2011).

    Article  Google Scholar 

  10. M. Fujikura, S. Arai, M. Mizokami, H. Mogi, and T. Kubota, US Patent 6558479, 2003.

  11. M. Hastenrath, “Developments of electrical steel (ThyssenKrupp),” in Electrical Steel and Core Performance (Proc. IEEE Transformer Committee Fall Meeting) (Chicago, 2009).

    Google Scholar 

  12. I. Mogi, et al., Electrical steel sheet for low-noise transformer, US Patent Application publication 2004/0178872A1. 2004.

    Google Scholar 

  13. R. Girgis, “Performance of electrical steel in transformer cores (ABB),” in Electrical Steel and Core Performance (Proc. IEEE Transformer Committee Fall Meeting) (Chicago, 2009).

    Google Scholar 

  14. L. S. Karenina, G. S. Korzunin, and R. B. Puzhevich, “Effect of the phosphate component of electrical insulating coating on the magnetic losses in grain-oriented electrical steel,” Phys. Met. Metallogr. 111, 21–24 (2011).

    Article  Google Scholar 

  15. T. Yamamoto and T. Nozawa, “Effects of tensile stress on total loss of single crystals of 3% silicon-iron,” J. Appl. Phys. 41, 2981–2984 (1970).

    Article  Google Scholar 

  16. Yu. N. Dragoshanskii, E. B. Khan, and V. A. Zaikova, “Continuous forward motion of domain structure in alternative fields and its effect on the value of electromagnetic losses in Fe-3%Si alloy,” Fiz. Met. Metalloved. 39, 289 (1975).

    Google Scholar 

  17. B. K. Sokolov, Yu. N. Dragoshanskii, V. S. Matveeva, M. B. Tsyrlin, and R. B. Puzhevich, “Inhomogeneity of magnetic properties of an anisotropic electrical steel and specific features of dislocation structures,” Russ. J. Nondestruct. Testing 40, 768–775 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Redikul’tsev.

Additional information

Original Russian Text © A.A. Redikul’tsev, G.S. Korzunin, M.L. Lobanov, G.M. Rusakov, L.V. Lobanova, 2014, published in Fizika Metallov i Metallovedenie, 2014, Vol. 115, No. 7, pp. 691–696.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Redikul’tsev, A.A., Korzunin, G.S., Lobanov, M.L. et al. Effect of annealing on magnetostrictive characteristics of a grain-oriented electrical steel with ordinary and refined domain structure. Phys. Metals Metallogr. 115, 650–654 (2014). https://doi.org/10.1134/S0031918X14070072

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X14070072

Keywords

Navigation