Skip to main content
Log in

Thermal stability of nickel structure obtained by high-pressure torsion in liquid nitrogen

  • Structure, Phase Transformations, and Diffusion
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Using transmission electron microscopy and durometry, the structural evolution of commercially pure nickel (99.6%) under high-pressure torsion (HPT) in liquid nitrogen and subsequent annealings in the temperature range 100–400°C has been investigated. In this nickel, at cryogenic temperature, HPT gives rise to a nanocrystalline structure with the record high microhardness (6200 MPa) and average crystallite size ∼80 nm. The obtained structure is stable at room temperature and possesses a relatively low thermal stability, since recrystallization occurs at lower temperatures than after conventional deformation or HPT at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Gleiter, “Nanostructured materials: Basic concepts and microstructure,” Acta Mater. 48, 1–29 (2000).

    Article  Google Scholar 

  2. I. P. Suzdalev, Nanotechnology: Physicochemistry of Nanoclusters, Nanostructures, and Nanomaterials (KomKniga, Moscow, 2006) [in Russian].

    Google Scholar 

  3. A. I. Gusev, Nanomaterials, Nanostruñures, Nanotechnologies (FIZMATLIT, Moscow, 2009) [in Russian].

    Google Scholar 

  4. Yu. R. Kolobov, R. Z. Valiev, G. P. Grabovetskaya, et al., Grain Boundary Diffusion and Properties of Nanostructured Materials (Nauka, Novosibirsk, 2001) [in Russian].

    Google Scholar 

  5. R. Z. Valiev and I. V. Aleksandrov, Bulk Nanostructured Metal Materials (Akademkniga, Moscow, 2007) [in Russian].

    Google Scholar 

  6. R. Z. Valiev, Y. Estrin, Z. Horita, T. G. Langdon, M. J. Zehetbauer, and Y. T. Zhu, “Producing bulk ultrafine-grained materials by severe plastic deformation,” J. Miner. Met.Mater. Soc. (JOM) 58(4), 33–39 (2006).

    Article  Google Scholar 

  7. R. Pippan, S. Scheriau, A. Hohenwarter, and M. Hafok, “Advantages and limitations of HPT: A review,” Mater. Sci. Forum 584586, 16–21 (2008).

    Article  Google Scholar 

  8. A. P. Zhilyaev, G. V. Nurislamova, B. K. Kim, M. D. Baro, J. A. Szpunar, and T. G. Langdon, “Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion,” Acta Mater. 51, 753–765 (2003).

    Article  Google Scholar 

  9. A. V. Korznikov, A. N. Tyumentsev, and I. A. Ditenberg, “On the limiting minimum size of grains formed in metallic materials produced by high-pressure torsion, Phys. Met. Metallogr. 106, 418–423 (2008).

    Article  Google Scholar 

  10. R. Pippan, S. Scheriau, A. Taylor, M. Hafok, A. Hohenwarter, and A. Bachmaier, “Saturation of fragmentation during severe plastic deformation,” Ann. Rev. Mater. Res. 40, 319–343 (2010).

    Article  Google Scholar 

  11. N. A. Smirnova, V. I. Levit, and M. V. Degtyarev, “Nickel recrystallization upon heating after large deformations at 77 K,” Fiz. Met. Metalloved. 66, 1027–1029 (1988).

    Google Scholar 

  12. H. W. Zhang, X. Huang, R. Pippan, and N. Hansen, “Thermal behavior of Ni (99.967 and 99.5% purity) deformed to an ultra-high strain by high pressure torsion,” Acta Mater. 58, 1698–1707 (2010).

    Article  Google Scholar 

  13. H. W. Zhang, K. Lu, R. Pippan, X. Huang, and N. Hansen, “Enhancement of strength and stability of nanostructured Ni by small amounts of solutes,” Scr. Mater. 65, 481–484 (2011).

    Article  Google Scholar 

  14. V. V. Popov, E. N. Popova, D. D. Kuznetsov, A. V. Stolbovsky, E. V. Shorohov, P. A. Nasonov, K. A. Gaan, G. Reglitz, S. V. Divinski, and G. Wilde, “Evolution of Ni structure at dynamic channel-angular pressing,” Mater. Sci. Eng., A 585, 281–291 (2013).

    Article  Google Scholar 

  15. E. N. Popova, V. V. Popov, E. P. Romanov, and V. P. Pilyugin, “Thermal stability of nanocrystalline Nb produced by severe plastic deformation,” Phys. Met. Metallogr. 101, 52–57 (2006).

    Article  Google Scholar 

  16. E. N. Popova, V. V. Popov, E. P. Romanov, and V. P. Pilyugin, “Effect of the degree of deformation on the structure and thermal stability of nanocrystalline niobium produced by high-pressure torsion,” Phys. Met. Metallogr. 103, 407–413 (2007).

    Article  Google Scholar 

  17. Z. Horita, D. J. Smith, M. Nemoto, R. Z. Valiev, and T. G. Langdon, “Observations of grain boundary structure in submicrometer-grained Cu and Ni using high-resolution electron microscopy,” J. Mater. Res. 13, 446–450 (1998).

    Article  Google Scholar 

  18. A. P. Zhilyaev, M. D. Baro, Z. Khorita, Dzh. A. Shpunar, and T. G. Langdon, “Microstructure and grain-boundary spectrum of ultrafine-grained nickel produced by severe plastic deformation,” Russ. Metall. (Metally), No. 1, 60–74 (2004).

    Google Scholar 

  19. V. P. Pilyugin, T. M. Gapontseva, T. I. Chashukhina, L. M. Voronova, L. I. Shchinova, and M. V. Degtyarev, “Evolution of the structure and hardness of nickel upon cold and low-temperature deformation under pressure,” Phys. Met. Metallogr. 105, 409–417 (2008).

    Article  Google Scholar 

  20. A. P. Zhilyaev, K. Ohishi, T. G. Langdon, and T. R. McNelley, “Microstructural evolution in commercial purity aluminum during high-pressure torsion,” Mater. Sci. Eng., A 410-411, 277–280 (2005).

    Article  Google Scholar 

  21. V. V. Popov, E. N. Popova, A. V. Stolbovskiy, and V. P. Pilyugin, “Thermal stability of nanocrystalline structure in niobium processed by high pressure torsion at cryogenic temperatures,” Mater. Sci. Eng., A 528, 1491–1496 (2011).

    Article  Google Scholar 

  22. V. V. Popov, E. N. Popova, A. V. Stolbovskii, V. P. Pilyugin, and N. K. Arkhipova, “Nanostructurization of Nb by high-pressure torsion in liquid nitrogen and the thermal stability of the structure obtained,” Phys. Met. Metallogr. 113, 295–301 (2012).

    Article  Google Scholar 

  23. V. V. Popov, E. N. Popova, A. V. Stolbovskiy, and V. P. Pilyugin, “The structure of Nb obtained by severe plastic deformation and its thermal stability,” Mater. Sci. Forum 667–669, 409–414 (2011).

    Google Scholar 

  24. V. V. Popov, V. N. Kaigorodov, E. N. Popova, and A. V. Stolbovskii, “Mössbauer emission spectroscopy of grain boundaries in poly- and nanocrystalline niobium,” Bull. Russ. Acad. Sci.: Phys. 71, 1244–1248 (2007).

    Article  Google Scholar 

  25. V. V. Popov, V. N. Kaigorodov, E. N. Popova, and A. V. Stolbovsky, “NGR investigation of grain-boundary diffusion in poly- and nanocrystalline Nb,” Defect and Diffusion Forum 263, 69–74 (2007).

    Google Scholar 

  26. K. Y. Mulyukov, G. F. Korznikova, R. Z. Abdulov, and R. Z. Valiev, “Magnetic hysteretic properties of submicron nickel and their variations upon annealing,” J. Magn. Magn. Mater. 89, 207–213 (1990).

    Article  Google Scholar 

  27. E. Schafler and R. Pippan, “Effect of thermal treatment on microstructure in high pressure torsion (HPT) deformed nickel,” Mater. Sci. Eng., A 387-389, 799–804 (2004).

    Article  Google Scholar 

  28. A. V. Korznikov, G. F. Korznikova, M. M. Myshlyaev, R. Z. Valiev, D. Salimonenko, and O. Dimitrov, “Evolution of nanocrystalline Ni structure during heating,” Phys. Met. Metallogr. 84, 413–417 (1997).

    Google Scholar 

  29. I. I. Novikov, Theory of Heat Treatment of Metals (Metallurgiya, Moscow, 1986) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Popov.

Additional information

Original Russian Text © V.V. Popov, E.N. Popova, D.D. Kuznetsov, A.V. Stolbovskii, V.P. Pilyugin, 2014, published in Fizika Metallov i Metallovedenie, 2014, Vol. 115, No. 7, pp. 727–736.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popov, V.V., Popova, E.N., Kuznetsov, D.D. et al. Thermal stability of nickel structure obtained by high-pressure torsion in liquid nitrogen. Phys. Metals Metallogr. 115, 682–691 (2014). https://doi.org/10.1134/S0031918X14070060

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X14070060

Keywords

Navigation