Skip to main content
Log in

Dynamic equilibria of phases in the processes of the mechanosynthesis of an alloy with composition Fe72.6C24.5O1.1N1.8

  • Structure, Phase Transformations, and Diffusion
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

X-ray diffraction, Mössbauer spectroscopy, and measurements of the dynamic magnetic susceptibility have been used to investigate phase states of the Fe72.6C24.5O1.1N1.8 alloy at different stages of the mechanosynthesis (MS) in a planetary ball mill. The introduction of impurities of O and N into an Fe75C25-based alloy changes the sequence of the formation of phases during MS: instead of Fe3C, the Fe7C3 carbide is first to be formed. The processes of phase formation in the alloy preliminarily subjected to MS have unidirectional nature upon the continuation of the MS and upon annealings and are determined by the interaction of the alloy components with one another under the effect of the accumulated excess energy. The phase compositions of the MS alloys depend on the conditions of the dynamic equilibrium between the crystalline and amorphous phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Suryanarayana, Mechanical Alloying and Milling (Marcel Dekker, New York, 2004), p 184.

    Book  Google Scholar 

  2. E. P. Yelsukov and G. A. Dorofeev, “Mechanical alloying in binary Fe-M (M = C, B, Al, Si, Ge, Sn) systems,” J. Mater. Sci. 39, 5071–5079 (2004).

    Article  Google Scholar 

  3. V. A. Volkov, A. A. Chulkina, A. I. Ul’yanov, A. V. Protasov, and E. P. Elsukov, “Effect of silicon on the phase formation in mechanically activated systems based on Fe75C25: Mechanosynthesis of composite states,” Phys.Met. Metallogr. 113, 72–81 (2012).

    Article  Google Scholar 

  4. M. Sherif El-Eskandarany, K. Aoki, K. Sumiyama, and K. Suzuki, “Cyclic phase transformation of mechanically alloyed Co75Ti25 powders,” Acta. Mater. 50, 1113–1123 (2002).

    Article  Google Scholar 

  5. U. Patil, S.-J. Hong, and C. Suryanarayana, “An unusual phase transformation during mechanical alloying of an Fe-based bulk metallic glass composition,” J. Alloys Compd. 389, 121–126 (2005).

    Article  Google Scholar 

  6. T. Nasu, C. C. Koch, K. Nagaoka, N. Itoh, M. Sakurai, and K. Suzuki, “EXAFS study of the solid state amorphization process in an Fe-C alloy,” Mater. Sci. Eng., A 134, 1385–1388 (1991).

    Article  Google Scholar 

  7. T. Ogasawara, A. Inoue, and T. Masumoto, “Amorphization in Fe-metalloid systems by mechanical alloying,” Mater. Sci. Eng., A 134, 1338–1341 (1991).

    Article  Google Scholar 

  8. K. Tokumitzu and M. Umemoto, “Structural changes and 57Fe Mössbauer spectroscopy of mechanically alloyed Fe3C and Fe5C2,” Mater. Sci. Forum 360–362, 183–188 (2001).

    Article  Google Scholar 

  9. G. M. Wang, A. Calka, S. J. Campbell, and W. A. Kaczmarek, “Carburization of iron by ball-milling Fe50-C50,” Mater. Sci. Forum 179–181, 201–206 (1995).

    Article  Google Scholar 

  10. E. P. Elsukov, G. A. Dorofeev, V. M. Fomin, G. N. Konygin, A. V. Zagainov, and A. N. Maratkanova, “Mechanically alloyed Fe(100 − x)Cx (x = 5–25 at %) powders: I. Structure, phase composition, and temperature stability,” Phys. Met. Metallogr. 94, 356–366 (2002).

    Google Scholar 

  11. G. A. Dorofeev, E. P. Elsukov, V. M. Fomin, G. N. Konygin, A. V. Zagainov, and O. M. Nemtsova, “Phase formation in Fe68C32 system upon mechanical alloying,” Fiz. Khim. Obrab. Mater., No. 5, 71–78 (2001).

    Google Scholar 

  12. G. W. Wang, S. J. Campbell, A. Calka, and W. A. Kaczmarek, “Ball-milling of Fe-C (20–75% Fe),” Nanostructured Mater. 6, 389–392 (1995).

    Article  Google Scholar 

  13. T. Tanaka, S. Nasu, K. Nakagawa, K. N. Ishihara, and P. H. Shingu, “Mechanical alloying of Fe-C and Fe-C-Si systems,” Mater. Sci. Forum 88–90, 269–274 (1992).

    Article  Google Scholar 

  14. S. J. Campbell, G. M. Wang, A. Calka, and W. A. Kaczmarek, “Ball-milling of Fe75-C25: Formation of Fe3C and Fe7C3,” Mater. Sci. Eng., A 226–228, 75–79 (1997).

    Article  Google Scholar 

  15. E. P. Elsukov, V. A. Barinov, and L. V. Ovechkin, “Mechanochemical synthesis of iron carbides by milling iron powder in toluene,” Proc. 1st Int. Conf. on Mechanochemistry (ICM-93) (Inter. Sci., Cambridge, 1994), Vol. 2, pp. 63–66.

    Google Scholar 

  16. E. V. Shelekhov and T. A. Sviridova, “Programs for X-ray analysis of polycrystals,” Met. Sci. Heat Treat. 42, 309–313 (2000).

    Article  Google Scholar 

  17. E. P. Yelsukov, A. N. Maratkanova, S. F. Lomaeva, G. N. Konygin, O. M. Nemtsova, A. I. Ul’yanov, and A. A. Chulkina, “Structure, phase composition and magnetic properties of mechanically alloyed and annealed quasibinary Fe(70)Si(x)C(30 − x) alloys,” J. Alloys Compd. 407, 98–105 (2006).

    Article  Google Scholar 

  18. E. V. Voronina, N. V. Ershov, A. L. Ageev, and Yu. A. Babanov, “Regular algorithm for the solution of the inverse problem in Mössbauer spectroscopy,” Phys. Status Solidi B 160, 625–634 (1990).

    Article  Google Scholar 

  19. O. A. Bannykh, P. B. Budberg, and S. P. Alisova, Phase Diagrams of Binary and Multicomponent Iron-Based Systems: A Handbook (Metallurgiya, Moscow, 1986) [in Russian].

    Google Scholar 

  20. E. Bauer-Grosse, and G. le Caer, “Structural evolution of sputtered amorphous Fe1 − x Cx films for 0.19 ≤ x ≤ 0.49,” Philos. Mag. 56, 485–500 (1987).

    Article  Google Scholar 

  21. H. Bernas and S. A. Campbell, “Electronic exchange and the Mössbauer effect in iron-based interstitial compounds,” J. Phys. Chem. Solids 28, 17–24 (1967).

    Article  Google Scholar 

  22. E. Boellaard, A. M. van der Kraan, and J. W. Geus, “Behavior of a cyanide-derived Fe/Al2O3 catalyst during Fischer-Tropsch synthesis,” Appl. Catal. A: Gen. 147, 229–245 (1996).

    Article  Google Scholar 

  23. B. A. Apaev, Phase Magnetic Analysis of Alloys (Metallurgiya, Moscow, 1973) [in Russian].

    Google Scholar 

  24. M. A. Smirnov, V. M. Schastlivtsev, and L. G. Zhuravlev, Foundations of Steel Heat Treatment. A Tutorial (Ural. Otd. Ross. Akad. Nauk, Ekaterinburg, 1999) [in Russian].

    Google Scholar 

  25. A. M. Glezer, “On the nature of ultrahigh plastic (megaplastic) strain,” Bull. Russ. Acad. Sci.: Phys. 71, 1722–1730 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Volkov.

Additional information

Original Russian Text © V.A. Volkov, I.A. El’kin, A.V. Zagainov, A.V. Protasov, E.P. Elsukov, 2014, published in Fizika Metallov i Metallovedenie, 2014, Vol. 115, No. 6, pp. 593–601.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkov, V.A., El’kin, I.A., Zagainov, A.V. et al. Dynamic equilibria of phases in the processes of the mechanosynthesis of an alloy with composition Fe72.6C24.5O1.1N1.8 . Phys. Metals Metallogr. 115, 557–565 (2014). https://doi.org/10.1134/S0031918X14060143

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X14060143

Keywords

Navigation