Skip to main content
Log in

Two Coils in the Morphology of Myelodactylids (Crinoidea, Disparida): the Morphogenetic Basis of Their Formation and Adaptation Potential

  • Published:
Paleontological Journal Aims and scope Submit manuscript

Abstract

In myelodactylids, the coil of the mesostele and the crown with a proxistele coiled in the same plane in the opposite direction result from the two fundamental processes in the evolution of echinoderms, which happened when their free-floating ancestor settled at the bottom and became attached to the ground by the ventral side of the anterior end of the body. The coil of the mesostele emerged due to the tendency of the stem to curve from the ventral to the dorsal side in the larvae, after they became attached, by the ventral side of the preoral lobe, and the growth vector changed from horizontal to vertical. The curvature of the proxistele, together with the crown in the same larval plane but in the opposite direction, from the dorsal side to the ventral, appeared during the paedomorphic delay in the process of elevation (torsion) in the ontogeny of myelodactylids. The coiling of the mesostele and the curvature of the proxistele with the crown in the E‑BC plane determine the conformity of this plane to the larval plane in pentaradiate echinoderms, and the approximate conformity of the E ray to the dorsal side of the larva, and the interray BC to its ventral side. The morphology of myelodactylids shows that their stem in the feeding position stretched along slightly compacted ground, resting on cirri, and the crown extended at a slight acute angle over the stem downstream. In cases of danger, the stem coiled with its lower side inward, so that the crown was protected inside the coil by cirri. The coil of Zuravlicrinus milicinae gen. et sp. nov. from the Silurian of the Urals, and Valimocrinus terentyevi gen. et sp. nov. from the Ordovician of the Leningrad Region, coiled while growing around stems of other crinoids, and could not uncoil. Both genera, as well as Musicrinus Donovan, are known only from stem fragments and are tentatively assigned to myelodactylids. The finding of the genus Eomyelodactylus in China shows its spread far beyond North America. Findings of myelodactylids in Siberia show significant differences from other myelodactylids, allowing them to be assigned to a new genus Imagdacrinus gen .nov.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Arendt, Yu.A., Cyrtocrinid Crinoids, Trudy Paleontol. Inst. Akad. Nauk SSSR, 1974, vol. 144, pp. 1–144.

    Google Scholar 

  2. Ausich, W.I., and Copper, P., The Crinoidea of Anticosti Island, Québec (Late Ordovician to Early Silurian), Palaeontographica Canadiana, 2010 vol. 29, pp. 1–157.

    Google Scholar 

  3. Ausich, W.I. and Wilson, M.A., Llandovery (early Silurian) crinoids from Hiiumaa Island, western Estonia, J. Paleont., 2016, vol. 90, no. 6, pp. 1138–1147.

    Article  Google Scholar 

  4. Baumiller, T.K. and Ausich, W.I., Crinoid stalk flexibility: theoretical predictions and fossil stalk postures, Lethaia, 2007, vol. 29, no. 1, pp. 47–59.

    Article  Google Scholar 

  5. Bolton, T.E., Echinodermata of the Ordovician (Pleurocystites, Cremacrinus) and Silurian (Hemicystites, Protaxocrinus, Mcnamaratylus) of the Lake Timiskaming region, Ontario and Quebec, Geological Survey of Canada Bulletin, 1970, vol. 187, pp. 59–66.

  6. Bourseau, J., Ameziane-Cominardi, N., and Roux, M., Un crinoïde pédonculé nouveau (Échinodermes), representant actuel de la famille jurassique des Hemicrinidae: Gymnocrinus richeri nov. sp. des fonds bathyaux de Nouvelle-Calédonie (S.W. Pacifique), Comptes Rendus de l’Académie des Sciences, Série III Sciences de la Vie, 1987, vol. 305, no. 16, pp. 595–599.

    Google Scholar 

  7. Brett, C.E., Terminology and functional morphology of attachment structures in pelmatozoan echinoderms, Lethaia, 1981, vol. 14, pp. 343–370.

    Article  Google Scholar 

  8. Clement, C.R. and Brett, C.E., Echinoderm Faunas of the Decatur Limestone and Ross Formation (Upper Silurian to Lower Devonian) of West-Central Tennessee, Bull. Amer. Paleontol., 2015, no. 388, pp. 1–118.

  9. Donovan, S.K. and Sevastopulo, G.D., Myelodactilid crinoids from the Silurian of the British Isles, Palaeontology. 1989, vol. 32, no. 4, pp. 689–710.

    Google Scholar 

  10. Donovan, S. K., Ristnacrinus and the earliest myelodactylid from the Ashgillian Boda Limestone of Sweden, Geol. För. Stockh. Förhandl., 1985, vol. 106, no. 4, pp. 347–356.

    Article  Google Scholar 

  11. Donovan, S.K., The improbability of a muscular cirroid column, Lethaia, 1989, vol. 22, pp. 307–315.

    Article  Google Scholar 

  12. Donovan, S.K., Problematic aspects of the form and function of the stem in Palaeozoic crinoids, Earth-Sci. Rev., 2016, vol. 154, pp. 174–182.

    Article  Google Scholar 

  13. Donovan, S.K. and Franzén-Bengtson, C., Myelodactylid crinoid columnals from the Lower Visby Beds (Llandoverian) of Gotland, Geol. För. Stockh. Förhandl., 1988, vol. 110, pp. 69–79.

    Article  Google Scholar 

  14. Eckert, J.D. and Brett, C.E., Taxonomy and paleoecology of the Silurian myelodactylid crinoid Crinobrachiatus brachiatus (Hall), Roy. Ontario Mus. Life Sci. Contrib., 1985, vol. 141, pp. 1–15.

    Google Scholar 

  15. Eckert, J.D., The Early Silurian myelodactylid crinoid Eomyelodactylus Foerste, J. Paleontol., 1990, vol. 64, no. 1, pp. 135–141.

    Article  Google Scholar 

  16. Gorzelak, P. and Zamora, S., Understanding form and function of the stem in early flattened echinoderms (pleurocystitids) using a microstructural approach, PeerJ, 2016, vol. 4, e1820.

    Article  Google Scholar 

  17. Gorzelak, P., Głuchowski, E., and Salamon, M.A., Reassessing the improbability of a muscular crinoid stem, Sci. Rep., 2014, vol. 4, Article number: 6049.

    Google Scholar 

  18. Moore, R.C., Ray structures of some inadunate crinoids, The University of Kansas paleontological contributions. Echinodermata, 1962, Article 5, pp. 1–47.

    Google Scholar 

  19. Moore, R.C., et al., Order Disparida, in Treatise on Invertebrate Paleontology, Part T. Echinodermata 2, vol. 2. Boulder, Colorado, Lawrence, Kansas: The Geological Society of America and The University of Kansas, 1978, pp. T520–T564.

    Google Scholar 

  20. Motokawa, T., Connective tissue catch in echinoderm, Biological Reviews, 1984, vol. 59, no. 2, pp. 255–270.

    Article  Google Scholar 

  21. Oji, T. and, Amemyia, S., Survival of Crinoid Stalk Fragments and Its Taphonomic Implications, Paleont. Res., 1998, vol. 2, no. 1, pp. 67–70.

    Google Scholar 

  22. Prokop, R.J., Simakocrinus gen. nov. (Crinoidea, col.) from the Bohemian Early and Middle Devonian of the Barrandian area (the Czech Republic), Acta Musei Nationalis Pragae. Series B—Historia Naturalis, 2013, vol. 69, nos. 1–2, pp. 65–68.

    Article  Google Scholar 

  23. Rozhnov, S.V., Crinoids of the superfamily Pisocrinacea. Trudy Paleontol. Inst. Akad. Nauk SSSR, 1981, vol. 192, pp. 1–128.

    Google Scholar 

  24. Rozhnov, S.V., Morphogenesis and evolution of crinoids and other pelmatozoan echinoderms in the early Paleozoic, Paleontol. J., 2002, vol. 36, Suppl. 6, pp. S525–S674.

    Google Scholar 

  25. Rozhnov, S.V., Appearance and evolution of marine benthic communities in the Early Palaeozoic, Paleontol. J., 2006, vol. 40, Suppl. 4, pp. S444–S452.

    Article  Google Scholar 

  26. Rozhnov, S.V., Origin of Echinoderms in the Palaeozoic Evolutionary Fauna: Ecological Aspects, Acta Palaeontol. Sin., 2007, vol. 46, Suppl., pp. 416–421.

    Google Scholar 

  27. Rozhnov, S.V., Development of the trophic structure of Vendian and Early Paleozoic marine communities, Paleontol. J., 2009, vol. 43, no. 11, pp. 1364–1377.

    Article  Google Scholar 

  28. Rozhnov, S.V., The anteroposterior axis in echinoderms and displacement of the mouth in their phylogeny and ontogeny, Biol. Bull., 2012, vol. 39, no. 2, pp. 162–171.

    Article  Google Scholar 

  29. Rozhnov, S.V., Symmetry of echinoderms: from initial bilaterally-asymmetric metamerism to pentaradiality, Nat. Sci., 2014, vol. 6, no. 4, pp. 171–183.

    Google Scholar 

  30. Rozhnov, S.V., Modularity and heterochronies in the evolution of Metazoa: paleontological aspect, Paleontol. J., 2015, vol. 49, no. 14, pp. 1–15.

    Article  Google Scholar 

  31. Rozhnov, S.V., Architectonics of Metazoa as the Basis for the Reconstruction of the Ontogeny and Phylogeny of Extinct Taxa, Paleontol. J., 2018, vol. 52, no. 14, pp. 1672–1678.

    Article  Google Scholar 

  32. Semenov, N.K., Terentiev, S.S., Mirantsev, G.V., et al., A New Hybocrinid Genus (Echinodermata, Crinoidea) from the Middle Ordovician of Ladoga Glint on the Volkhov River, Paleontol. Zhurn., 2021, vol. 55, no. 1, pp. 54–63.

    Article  Google Scholar 

  33. Springer, F., Unusual forms of fossil crinoids, Proc. US Nation. Mus., 1926, vol. 67, no. 2581, pp. 1–137.

  34. Stukalina, G.A., Silurian crinoids of sections of the Gorbiachin and Kureyka rivers, in Razrezy, fauna i flora severo-zapadnoy chasti Tungusskoy sineklizy, Moscow: Nauka, 1982, pp. 111–159. (Silur Sibirskoy platformy, no. 508).

  35. Stukalina, G.A., Silurian crinoids of the Siberian Platform, Trudy Paleontol. Inst. Ross. Akad. Nauk, 2000, vol. 278, pp. 1–109.

    Google Scholar 

  36. Wilkie, I.C., Mutable collagenous tissues: extracellular matrix as mechanoeffector, in Echinoderm Studies, Jangoux, M. and Lawrence, J.M., eds., Rotterdam: Balkema, 1996, pp. 61–102.

    Google Scholar 

  37. Wilkie, I.C., Is muscle involved in the mechanical adaptability of echinoderm mutable collagenous tissue?, J. Exper. Biol., 2002, vol. 205, pp. 159–165.

    Article  Google Scholar 

  38. Yamada, A., Takehana, Y., Tamori, M., and Motokawa, T., Connective Tissues in Echinoderm Animals that can Reversibly Change their Stiffness and their Stiffening Protein Factors, Biophys. J., 2014, vol. 106, no. 2, pp. 733a–734a.

    Article  Google Scholar 

  39. Yeltyschewa, R.S., Ordovician and Silurian crinoids of the Siberian Platform, Trudy VSEGEI, Novaya Seriya, 1960, no. 3 (Biostratigrafiya paleozoya Sibirskoi Platformy. Ordovik i Silur (Biostratigraphy of the Paleozoic of the Siberian Platform. Ordovician and Silurian)), pp. 1–40.

Download references

ACKNOWLEDGMENTS

The author is grateful to the staff of the Paleontological Institute, Russian Academy of Sciences: S.V. Bagirov for photography, G.A. Anekeeva for making drawings and comments, and G.A. Mirantsev for valuable remarks. Special thanks to the reviewer V.V. Isayeva, who made important comments.

Funding

This work was supported by the Russian Science Foundation grant no. 19-14-00346. This paper is a contribution to the International Geoscience Program (IGCP) Project 653—The Onset of the Great Ordovician Biodiversification Event.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Rozhnov.

Additional information

Translated by S. Nikolaeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozhnov, S.V. Two Coils in the Morphology of Myelodactylids (Crinoidea, Disparida): the Morphogenetic Basis of Their Formation and Adaptation Potential. Paleontol. J. 55, 993–1012 (2021). https://doi.org/10.1134/S0031030121090124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031030121090124

Keywords:

Navigation