Skip to main content
Log in

Investigation of the Extraordinary Phase Transition in Antiferromagnetic Thin Films: Computer Simulation

  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The extraordinary phase transition in antiferromagnetic thin films has been analyzed by computer simulation. The simulation has been performed using the Ising model and the Metropolis algorithm. Epitaxial films with a cubic lattice containing several monoatomic layers have been considered. The condition for the occurrence of surface and extraordinary phase transitions is the difference between the exchange integrals in the bulk of the film and on its surface. It is shown that the surface and extraordinary phase transitions occur in antiferromagnetic thin films containing no less than eight monoatomic layers. The extraordinary phase transition has been investigated for different film thicknesses. It is shown that the magnetic susceptibility near the phase transition line has a logarithmic dependence on the phase-transition temperature. The dependence of the critical indices of the logarithmic phase on the film thickness is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. U. Gradmann, J. Magn. Magn. Mater. 100, 481 (1991). https://doi.org/10.1016/0304-8853(91)90836-y

    Article  ADS  Google Scholar 

  2. M. Campagna, J. Vac. Sci. Technol. A 3, 1491 (1985). https://doi.org/10.1116/1.572771

    Article  Google Scholar 

  3. M. Potthoff and W. Nolting, Phys. Rev. B 52, 15341 (1995). https://doi.org/10.1103/physrevb.52.15341

    Article  ADS  Google Scholar 

  4. S. V. Belim, J. Exp. Theor. Phys. 103, 611 (2006). https://doi.org/10.1134/s106377610610013x

    Article  ADS  Google Scholar 

  5. H. W. Diehl and M. Shpot, Nucl. Phys. B 528, 595 (1998). https://doi.org/10.1016/s0550-3213(98)00489-1

    Article  ADS  Google Scholar 

  6. S. V. Belim and E. V. Trushnikova, Phys. Met. Metallogr. 119, 441 (2018). https://doi.org/10.1134/s0031918x18050034

    Article  ADS  Google Scholar 

  7. M. Metlitski, SciPost Phys. 12, 131 (2022). https://doi.org/10.21468/scipostphys.12.4.131

    Article  ADS  MathSciNet  Google Scholar 

  8. J. Padayasi, A. Krishnan, M. Metlitski, I. Gruzberg, and M. Meineri, SciPost Phys. 12, 190 (2022). https://doi.org/10.21468/scipostphys.12.6.190

    Article  ADS  Google Scholar 

  9. F. P. Toldin, Phys. Rev. Lett. 126, 135701 (2021). https://doi.org/10.1103/PhysRevLett.126.135701

  10. M. Hu, Yo. Deng, and J.-P. Lu, Phys. Rev. Lett. 127, 120603 (2021). https://doi.org/10.1103/physrevlett.127.120603

  11. C. Ding, W. Zhu, W. Guo, and L. Zhang, SciPost Phys. 15, 012 (2023). https://doi.org/10.21468/scipostphys.15.1.012

  12. Yo. Deng, H. W. J. Blöte, and M. P. Nightingale, Phys. Rev. E 72, 16128 (2005). https://doi.org/10.1103/physreve.72.016128

    Article  ADS  MathSciNet  Google Scholar 

  13. C. S. Arnold and D. P. Pappas, Phys. Rev. Lett. 85, 5202 (2000). https://doi.org/10.1103/physrevlett.85.5202

    Article  ADS  Google Scholar 

  14. M. Krech, Phys. Rev. B 62, 6360 (2000). https://doi.org/10.1103/physrevb.62.6360

    Article  ADS  Google Scholar 

  15. L.-R. Zhang, C. Ding, Yo. Deng, and L. Zhang, Phys. Rev. B 105, 224415 (2022). https://doi.org/10.1103/physrevb.105.224415

  16. D. P. Landau and K. Binder, Phys. Rev. B 17, 2328 (1978). https://doi.org/10.1103/physrevb.17.2328

    Article  ADS  Google Scholar 

Download references

Funding

This research was funded by the Russian Science Foundation, project no. 23-29-00108.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Belim.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Sin’kov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belim, S.V., Bogdanova, E.V. Investigation of the Extraordinary Phase Transition in Antiferromagnetic Thin Films: Computer Simulation. Opt. Spectrosc. 131, 1137–1142 (2023). https://doi.org/10.1134/S0030400X24700243

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X24700243

Keywords:

Navigation