Skip to main content
Log in

Quantum Chemical Insight into Molecular Structure, Spectroscopic and Nonlinear Optical Studies on Methylene bis(dithiobenzoate)

  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

In this study, the methylene bis(dithiobenzoate) molecule, (C15H12S4), as a bioactive molecule has been subjected to quantum chemical computations using density functional theory (DFT) in order to investigate the molecular geometry, IR, UV-visible and NMR spectral studies. The title molecule has been optimized at the B3LYP, B3PW91 and PBE1PBE levels of DFT and 6-311G(d,p) basis set. Furthermore, the vibrational frequencies, the HOMO–LUMO energy levels, the 1H and 13C NMR chemical shifts (ppm), nonlinear optical properties calculations of the title compound were obtained by B3LYP, B3PW91 and PBE1PBE levels. The maximum electronic transition wavelengths, oscillator strengths, excited state and transition dipole moments for the title compound were also investigated by B3LYP, B3PW91 and PBE1PBE levels of time-dependent TD-DFT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. J. Voss, J. Sulfur Chem. 30, 167 (2009).

    Article  Google Scholar 

  2. A. Shrivastav, N. K. Singh, and G. Shrivastav, Bioorg. Med. Chem. 10, 2693 (2002).

    Article  Google Scholar 

  3. I. Yamamoto, A. Matsubara, K. Tomitani, O. Mizuno, and H. Tanada, Jpn. Kokai Tokkyo Koho 319, 477 (1989).

    Google Scholar 

  4. I. Yamamoto, A. Matsubara, O. Mizuno, and K. Tomitani, Jpn. Kokai Tokkyo Koho 319, 478 (1989).

    Google Scholar 

  5. I. Yamamoto, A. Matsubara, O. Mizuno, and K. Tomitani, Jpn. Kokai Tokkyo Koho 09, 392 (1994).

    Google Scholar 

  6. S. Bahçeli, E. K. Sarıkaya, Ö. Dereli, and F. P. Özturan, J. Mol. Struct. 1216, 128315 (2020).

    Article  Google Scholar 

  7. Z. S. Wu, W. J. Guo, J. Zhang, Y. D. Liu, X. C. Song, Y. Jiang, Q. Weng, and Z. W. An, Sol. Energy 186, 1 (2019).

  8. Y.-R. Liang, H.-C. Tong, Y.-H. Lo, C.-H. Lin, and T. S. Kuo, Acta Crystallogr., E 64, 2366 (2008).

    Article  Google Scholar 

  9. A. D. Becke, J. Chem. Phys. 98, 1372 (1993).

    Article  ADS  Google Scholar 

  10. P. J. Stephens, F. J. Devlin, C. F. Chabolowski, and M. J. Frisch, J. Phys. Chem. 98, 11623 (1994).

    Article  Google Scholar 

  11. A. D. Becke and M. R. Roussel, Phys. Rev. A 39, 3761 (1989).

    Article  ADS  Google Scholar 

  12. C. Adamo, G. E. Scuseria, and V. Barone, J. Chem. Phys. 111, 2889 (1999).

    Article  ADS  Google Scholar 

  13. Y. Shao et al., Mol. Phys. 113, 184 (2015).

    Article  ADS  Google Scholar 

  14. Y. Shao, Z. Gan, E. Epifanovsky, A. T. B. Gilbert, M. Wormit, J. Kussmann, A. W. Lange, A. Behn, J. Deng, X. Feng, D. Ghosh, M. Goldey, P. R. Horn, L. D. Jacobson, I. Kaliman, et al., Q-Chem 4.3 (Q‑Chem, Inc., Pleasanton, CA, 2015).

    Google Scholar 

  15. N. A. Besley, M. J. G. Peach, and D. J. Tozer, Phys. Chem. Chem. Phys. 11, 10350 (2009).

    Article  Google Scholar 

  16. J. Liu and W. Z. Liang, J. Chem. Phys. 135, 014113 (2011).

    Article  ADS  Google Scholar 

  17. J. Liu and W. Z. Liang, J. Chem. Phys. 135, 184111 (2011).

    Article  ADS  Google Scholar 

  18. L. Skripnikov, Chemissian: Software to Analyze Spectra, Build Density Maps and Molecular Orbitals, Version 4.43 (2016).

  19. S. Altürk, D. Avcı, Ö. Tamer, and Y. Atalay, Comput. Theor. Chem. 1100, 34 (2017).

    Article  Google Scholar 

  20. B. van Dijk and G. J. Visser, Acta Crystallogr., B 27, 846 (1971).

    Article  Google Scholar 

  21. L. J. Bellamy, The Infrared Spectra of Complex Molecules, 3rd ed. (Wiley, New York, 1975).

    Book  Google Scholar 

  22. N. B. Colthup, L. H. Daly, and E. Wiberley, Introduction to Infrared and Raman Spectroscopy (Academic, New York, 1964).

    Google Scholar 

  23. L. G. Wade, Jr., Organic Chemistry, 6th ed. (Pearson Prentice Hall, Upper Saddle River, NJ, 2006).

    Google Scholar 

  24. B. H. Stuart, Infrared Spectroscopy: Fundamentals and Applications (Wiley, Chichester, 2004).

    Book  Google Scholar 

  25. B. Dede, D. Avcı, D. Varkal, and S. Bahçeli, Acta Phys. Pol. A 134, 1083 (2018).

    Article  ADS  Google Scholar 

  26. R. M. Silverstein and F. X. Webster, Spectroscopic Identification of Organic Compound, 6th ed. (Wiley, New York, 1998).

    Google Scholar 

  27. R. J. Anderson, D. J. Bendell, and P. W. Groundwater, Organic Spectroscopic Analysis (R. Soc. Chem., Sanderland, 2004).

    Book  Google Scholar 

  28. H. O. Kalinowski, S. Berger, and S. Braun, Carbon-13 NMR Spectroscopy (Wiley, Chichester, 1988).

    Google Scholar 

  29. K. Fukui, Science (Washington, DC, U. S.) 218, 747 (1982).

    Article  ADS  Google Scholar 

  30. R. G. Pearson, Proc. Natl. Acad. Sci. U. S. A. 83, 8440 (1986).

    Article  ADS  Google Scholar 

  31. S. Altürk, D. Avcı, Ö. Tamer, Y. Atalay, and O. Şahin, J. Phys. Chem. Solids 98, 71 (2016).

    Article  ADS  Google Scholar 

  32. S. Chtita, M. Ghamali, M. Larif, A. Adad, H. Rachid, M. Bouachrine, and T. Lakhlifi, Int. J. Innovative Res. Sci. Eng. Technol. 2, 7951 (2013).

    Google Scholar 

  33. A. Pîrnău, V. Chiş, O. Oniga, N. Leopold, L. Szabo, M. Baias, and O. Cozar, Vibr. Spectrosc. 48, 289 (2008).

    Article  Google Scholar 

  34. L.-T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, G. Rikken, and S. R. Marder, J. Phys. Chem. 95, 10631 (1991).

    Article  Google Scholar 

  35. K. D. Singer and A. F. Garito, J. Chem. Phys. 75, 3572 (1981).

    Article  ADS  Google Scholar 

  36. I. Ledoux and J. Zyss, Chem. Phys. 73, 203 (1952).

    Article  Google Scholar 

  37. J. L. Oudar, J. Chem. Phys. 67, 446 (1977).

    Article  ADS  Google Scholar 

  38. J. L. Oudar and J. Zyss, Phys. Rev. A 26, 2028 (1982).

    Article  ADS  Google Scholar 

  39. D. Avcı, Spectrochim. Acta, Part A 77, 665 (2010).

    Article  ADS  Google Scholar 

  40. D. Avcı, Spectrochim. Acta, Part A 82, 37 (2011).

    Article  ADS  Google Scholar 

  41. Y. Zhang, C.-Y. Zhao, W.-H. Fang, and X.-Z. You, Theor. Chem. Acc. 96, 129 (1997).

    Article  Google Scholar 

  42. D. Avcı, Ö. Tamer, and Y. Atalay, J. Mol. Liq. 220, 495 (2016).

    Article  Google Scholar 

  43. J. O. Morley, J. Phys. Chem. 99, 10166 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Davut Avcı or Semiha Bahçeli.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avcı, D., Bahçeli, S. Quantum Chemical Insight into Molecular Structure, Spectroscopic and Nonlinear Optical Studies on Methylene bis(dithiobenzoate). Opt. Spectrosc. 129, 1207–1218 (2021). https://doi.org/10.1134/S0030400X21090071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X21090071

Keywords:

Navigation