Skip to main content
Log in

Broadening and Shift of the D1 and D2 Lines of Rb Atoms by Neon: Resolving Hyperfine Components in a Half-Wave Cell Using Double Differentiation with Respect to Frequency

  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

A cell with a submicron thickness was used to measure the broadening and shift of the D1 and D2 lines of Rb atoms by neon. The resolution of hypefine components is achieved by a combination of two techniques. First, the Rb vapor column thickness in the direction of propagation of the laser radiation was chosen equal to half of its wavelength λ under conditions of resonance with the atomic transition frequency. For rubidium atoms λ/2 ~ 400 nm. At a nanocell thickness L ~ λ/2, in the transmission spectrum A(ν), the spectral lines of atomic transitions are narrowed due to the exclusion of Doppler broadening. Second, further narrowing of the detected signals was achieved by the double differentiation of the transmission spectrum, A''(ν). The transmission spectra of pure rubidium vapor and rubidium vapor with the addition of neon have been measured at different pressures. The measured values of the shift coefficients of the D1 and D2 lines of rubidium in the presence of Ne were –1.1 ± 0.2 MHz/Torr and –2.1 ± 0.2 MHz/Torr, respectively. The broadening coefficients of the D1 and D2 lines coincide and are equal to 10 ± 1 MHz/Torr. Due to its high spectral resolution, this technique allows separate measurements for each individual transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005).

    Article  ADS  Google Scholar 

  2. A. Sargsyan, R. Mirzoyan, A. Papoyan, and D. Sarkisyan, Opt. Lett. 37, 4871 (2012).

    Article  ADS  Google Scholar 

  3. D. V. Brazhnikov, S. Ignatovizh, V. I. Vishnyakov, R. Boudot, and M. N. Skvortsov, Opt. Express 27, 36034 (2019).

    Article  ADS  Google Scholar 

  4. W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation (Springer, Berlin, 2004).

    Google Scholar 

  5. S. L. Izotova, A. I. Kantserov, and M. S. Frish, Opt. Spectrosc. 51, 107 (1981).

    ADS  Google Scholar 

  6. Ch. Ottinger, R. Scheps, G. W. York, and A. Gallagher, Phys. Rev. A 11, 1815 (1975).

    Article  ADS  Google Scholar 

  7. R. Granier, J. Granier, and F. Schuller, J. Quant. Spectrosc. Radiat. Transfer 16, 143 (1976).

    Article  ADS  Google Scholar 

  8. V. N. Rebane, Opt. Spectrosc. 44, 376 (1978).

    ADS  Google Scholar 

  9. A. Andalkar and R. B. Warrington, Phys. Rev. A 65, 032708 (2002).

    Article  ADS  Google Scholar 

  10. J. Kitching, Appl. Phys. Rev. 5, 031302 (2018).

    Article  ADS  Google Scholar 

  11. T. A. Vartanyan and D. L. Lin, Phys. Rev. A 51, 1959 (1995).

    Article  ADS  Google Scholar 

  12. D. Bloch and M. Ducloy, Adv. At. Mol. Opt. Phys. 50, 91 (2005).

    Article  ADS  Google Scholar 

  13. A. Sargsyan, A. Papoyan, I. G. Hughes, C. S. Adams, and D. Sarkisyan, Opt. Lett. 42, 1476 (2017).

    Article  ADS  Google Scholar 

  14. T. Peyrot, C. Beurthe, S. Coumar, M. Roulliay, K. Perronet, P. Bonnay, C. S. Adams, A. Browaeys, and Y. R. P. Sortais, Opt. Lett. 44, 1940 (2019).

    Article  ADS  Google Scholar 

  15. D. E. Thornton, G. T. Phillips, and G. P. Perram, Opt. Commun. 284, 2890 (2011).

    Article  ADS  Google Scholar 

  16. A. Sargsyan, A. Amiryan, S. Kartaleva, and D. Sarkisyan, J. Exp. Theor. Phys. 125, 43 (2017).

    Article  ADS  Google Scholar 

  17. A. Sargsyan, D. Sarkisyan, U. Krohn, J. Keaveney, and C. Adams, Phys. Rev. A 82, 045806 (2010).

    Article  ADS  Google Scholar 

  18. G. Hakhumyan, A. Sargsyan, C. Leroy, Y. Pashayan-Leroy, A. Papoyan, and D. Sarkisyan, Opt. Express 18, 14577 (2010).

    Article  ADS  Google Scholar 

  19. G. Dutier, A. Yarovitski, S. Saltiel, A. Papoyan, D. Sarkisyan, D. Bloch, and M. Ducloy, Europhys. Lett. 63, 35 (2003).

    Article  ADS  Google Scholar 

  20. A. Sargsyan, A. Amiryan, Y. Pashanyan-Leroy, C. Leroy, A. Papoyan, and D. Sarkisyan, Opt. Lett. 44, 5533 (2019).

    Article  ADS  Google Scholar 

  21. A. Sargsyan, T. A. Vartanyan, and D. Sarkisyan, Opt. Spectrosc. 128, 575 (2020).

    Article  ADS  Google Scholar 

  22. A. Sargsyan, A. Amiryan, and D. Sarkisyan, J. Exp. Theor. Phys. 131, 220 (2020).

    Article  ADS  Google Scholar 

  23. A. Sargsyan, A. Amiryan, E. Klinger, and D. Sarkisyan, J. Phys. B 53, 185002 (2020).

    Article  ADS  Google Scholar 

  24. A. Sargsyan, A. Amiryan, A. Tonoyan, E. Klinger, and D. Sarkisyan, Phys. Lett. A 390, 127114 (2021).

    Article  Google Scholar 

  25. V. V. Vassiliev, S. A. Zibrov, and V. L. Velichansky, Rev. Sci. Instrum. 77, 013102 (2006).

    Article  ADS  Google Scholar 

  26. A. D. Sargsyan, D. Sarkisyan, E. Pashayan-Leroy, C. Leroy, P. Moroshkin, and A. Weis, J. Contemp. Phys. (Arm. Acad. Sci.) 43, 7 (2008).

  27. G. A. Pitz, A. J. Sandoval, T. B. Tafoya, W. L. Klennert, and D. A. Hostutler, J. Quant. Spectrosc. Radiat. Transfer 140, 18 (2014).

    Article  ADS  Google Scholar 

  28. D. Aumiler, T. Ban, and G. Pichler, Phys. Rev. A 70, 032723 (2004).

    Article  ADS  Google Scholar 

  29. J.-M. Hartmann, X. Landsheere, C. Boulet, D. Sarkisyan, A. S. Sarkisyan, C. Leroy, and E. Pangui, Phys. Rev. A 93, 012516 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sargsyan.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sargsyan, A., Vartanyan, T.A. & Sarkisyan, D. Broadening and Shift of the D1 and D2 Lines of Rb Atoms by Neon: Resolving Hyperfine Components in a Half-Wave Cell Using Double Differentiation with Respect to Frequency. Opt. Spectrosc. 129, 1173–1178 (2021). https://doi.org/10.1134/S0030400X2108018X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X2108018X

Keywords:

Navigation