Skip to main content
Log in

A Method for Forming a Single Focused Diffraction Order Using Binary Amplitude Diffractive Elements without a Spatial Carrier

  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

A method is proposed for the synthesis of self-focusing amplitude diffractive optical elements (DOEs) without a carrier spatial frequency for operation in diverging beams and forming a single focused diffraction order, which can occupy the entire region of the DOE image being reconstructed due to the absence of the need for spatial separation of orders. The synthesis takes place in two stages. The first is carried out by an iterative algorithm similar to the Gerchberg–Saxton algorithm, with the differences that the synthesized DOE is amplitude rather than phase, and the incident wavefront is diverging spherical. Next, the direct search with a random trajectory method is applied. As a result, for a binary amplitude DOE, it was possible to achieve synthesis error values of 6% and a diffraction efficiency of 6%. The results of the experimental implementation of DOE using a digital micromirror device are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. V. A. Soifer, L. L. Doskolovich, and N. L. Kazanskiy, Methods for Computer Design of Diffractive Optical Elements (Wiley, New York, 2002).

    Google Scholar 

  2. A. N. Putilin, A. V. Morozov, S. S. Kopenkin, S. E. Dubynin, and Yu. P. Borodin, Opt. Spectrosc. 128, 1828 (2020).

    Article  ADS  Google Scholar 

  3. N. N. Evtikhiev, V. V. Krasnov, I. D. Kuz’min, D. Yu. Molodtsov, V. G. Rodin, R. S. Starikov, and P. A. Cheremkhin, Quantum Electron. 50, 195 (2020).

    Article  ADS  Google Scholar 

  4. N. N. Evtikhiev, S. N. Starikov, D. V. Shaulskiy, R. S. Starikov, and E. Y. Zlokazov, Opt. Eng. 50, 065803 (2011).

    Article  ADS  Google Scholar 

  5. U. Schnars, C. Falldorf, J. Watson, and W. Juptner, Digital Holography and Wavefront Sensing: Principles, Techniques and Applications (Springer, Berlin, 2015).

    Book  Google Scholar 

  6. N. N. Evtikhiev, S. N. Starikov, P. A. Cheremkhin, and E. A. Kurbatova, Radiophys. Quantum El. 57, 635 (2015).

  7. L. B. Lesem, P. M. Hirsch, and J. A. Jordan, IBM J. Res. Developm. 13, 150 (1969).

    Google Scholar 

  8. T. Shimobaba, T. Kakue, Y. Endo, R. Hirayama, D. Hiyama, S. Hasegawa, Y. Nagahama, M. Sano, M. Oikawa, T. Sugie, and T. Ito, Opt. Express 23, 17269 (2015).

    Article  ADS  Google Scholar 

  9. P. A. Cheremkhin, N. N. Evtikhiev, V. V. Krasnov, L. A. Porshneva, V. G. Rodin, and S. N. Starikov, Proc. SPIE 9131, 913124 (2014).

    Article  Google Scholar 

  10. T.-H. Chao, T. Lu, B. Walker, and G. Reyes, Proc. SPIE 9094, 909402 (2014).

    Article  Google Scholar 

  11. J. Liang, R. N. Kohn, M. F. Becker, and D. J. Heinzen, Appl. Opt. 49, 1323 (2010).

    Article  ADS  Google Scholar 

  12. Y. X. Ren, R. De Lu, and L. Gong, Ann. Phys. 527, 447 (2015).

    Article  MathSciNet  Google Scholar 

  13. N. N. Evtikhiev, E. Y. Zlokazov, V. V. Krasnov, V. G. Rodin, R. S. Starikov, and P. A. Cheremkhin, Quantum Electron. 50, 667 (2020).

    Article  ADS  Google Scholar 

  14. R. W. Gerchberg and W. O. Saxton, Optik 2, 237 (1969).

    Google Scholar 

  15. A. P. Bondareva, P. A. Cheremkhin, N. N. Evtikhiev, V. V. Krasnov, V. G. Rodin, and S. N. Starikov, Proc. SPIE 9216, 92161J (2014).

    Article  ADS  Google Scholar 

  16. V. V. Krasnov, Proc. SPIE 10022, 1002226 (2016).

    Article  Google Scholar 

  17. J. R. Fienup, Appl. Opt. 36, 8352 (1997).

    Article  ADS  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Science Foundation (RSF), grant no. 19-19-00498.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Krasnov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by N. Petrov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krasnov, V.V., Starikov, R.S. & Zlokazov, E.Y. A Method for Forming a Single Focused Diffraction Order Using Binary Amplitude Diffractive Elements without a Spatial Carrier. Opt. Spectrosc. 129, 511–516 (2021). https://doi.org/10.1134/S0030400X21040147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X21040147

Keywords:

Navigation