Skip to main content
Log in

Spectral Characteristics of an Oblique-Incidence Reflection Interferometer as a Refractive Index Sensor

  • APPLIED OPTICS
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

A sensor of refractive index of analytical liquid operating in the Kretschmann geometry and based on an oblique-incidence reflection interferometer (RI) is simulated for the first time, and its spectral properties are investigated. The principle of operation of the sensor is based on the effect of inverted surface plasmon resonance (ISPR). The sensitive structure represents the metal–dielectric multilayer coating consisting of thin nickel film in combination with quarter-wave dielectric layers. Simulation of the principle of RI fabrication under oblique incidence of light is described. Expressions governing sensitivity, spectral width of the ISPR-induced maximum in reflection, along with the figure of merit, are derived. It is demonstrated that this type of sensor can exhibit extremely high values of the figure of merit (>103) due to high Q factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. B. A. Prabowo, A. Purwidyantri, and K.-C. Liu, Biosensors 8, 80 (2018). https://doi.org/10.3390/bios8030080

    Article  Google Scholar 

  2. J.-H. Choi, J.-H. Lee, J. Son, and J.-W. Choi, Sensors 20, 1003 (2020). https://doi.org/10.3390/s20041003

    Article  Google Scholar 

  3. S. Roh, T. Chung, and B. Lee, Sensors 11, 1565 (2011). https://doi.org/10.3390/s110201565

    Article  Google Scholar 

  4. A. Shalabney and I. Abdulhalim, Opt. Lett. 37, 1175 (2012). https://doi.org/10.1364/OL.37.001175

    Article  ADS  Google Scholar 

  5. Y. Zhou, P. Zhang, Y. He, Z. Xu, L. Liu, Y. Ji, and H. Ma, Appl. Opt. 53, 6344 (2014). https://doi.org/10.1364/AO.53.006344

    Article  ADS  Google Scholar 

  6. N. D. Goldina, Optoelectron. Instrum. Process. 45, 571 (2009). https://doi.org/10.3103/S8756699009060120

    Article  Google Scholar 

  7. N. D. Goldina, Thin-Layer Coatings for Laser Optics (Akademizdat, Novosibirsk, 2018) [in Russian].

    Google Scholar 

  8. M. Printz and J. R. Sambles, J. Mod. Opt. 40, 2095 (1993). https://doi.org/10.1080/09500349314552131

    Article  ADS  Google Scholar 

  9. A. Shalabney, A. Lakhtakia, I. Abdulhalim, A. Lahav, C. Patzig, I. Hazek, A. Karabchevsky, B. Rauschenbach, F. Zhang, and J. Xu, Photon. Nanostruct.–Fundam. Appl. 7, 176 (2009). https://doi.org/10.1016/j.photonics.2009.03.003

    Article  Google Scholar 

  10. R. Boruah, D. Mohanta, A. Choudhury, and G. A. Ahmed, Opt. Mater. 39, 273 (2015). https://doi.org/10.1016/j.optmat.2014.11.014

    Article  ADS  Google Scholar 

  11. P. Ou, Y. Jia, B. Cao, C. Zhang, S. Hu, and D. Feng, Chin. Opt. Lett. 6, 845 (2008). https://doi.org/10.3788/COL20080611.0845

    Article  Google Scholar 

  12. V. S. Terentyev, V. A. Simonov, and S. A. Babin, Laser Phys. Lett. 14, 25103 (2017). https://doi.org/10.1088/1612-202X/aa548e

    Article  Google Scholar 

  13. V. S. Terentiev, Optoelectron. Instrum. Process. 45, 563 (2009). https://doi.org/10.3103/S8756699009060119

    Article  Google Scholar 

  14. V. S. Terentyev, V. A. Simonov, and S. A. Babin, Opt. Express 24, 4512 (2016). https://doi.org/10.1364/OE.24.004512

    Article  ADS  Google Scholar 

  15. V. S. Terentyev, V. A. Simonov, I. A. Lobach, and S. A. Babin, Quant. Electron. 49, 399 (2019). https://doi.org/10.1070/QEL16922

    Article  ADS  Google Scholar 

  16. Yu. V. Troitskii, Single-Frequency Generation in Gas Lasers (Nauka, Novosibirsk, 1985) [in Russian].

    Google Scholar 

  17. A. D. Rakić, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, Appl. Opt. 37, 5271 (1998).

    Article  ADS  Google Scholar 

  18. N. D. Goldina, V. S. Terent’ev, and V. A. Simonov, Opt. Spectrosc. 120, 796 (2016). https://doi.org/10.1134/S0030400X16050118

    Article  ADS  Google Scholar 

  19. A. I. Plekhanov, V. P. Chubakov, and P. A. Chubakov, Phys. Solid State 53, 1145 (2011). https://doi.org/10.1134/S1063783411060254

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Dr. N.D. Goldina for detailed and fruitful discussion of the results.

Funding

This research was carried out within the framework of state assignment of the Institute of Automation and Electrometry of Siberian Branch of RAS (state registration no. АААА-А17-117062110026-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Terentyev.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terentyev, V.S., Simonov, V.A. Spectral Characteristics of an Oblique-Incidence Reflection Interferometer as a Refractive Index Sensor. Opt. Spectrosc. 129, 276–282 (2021). https://doi.org/10.1134/S0030400X2102017X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X2102017X

Keywords:

Navigation