Skip to main content
Log in

Study of the Optical and Plasmon Features in the Reflectance Spectra of the Silver Nanoparticle Layers Deposited from the AgNO3 onto the Silicon Surface

  • PHYSICAL OPTICS
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The reflectance spectra of Ag layers on a silicon substrate are interpreted using the approach based on the calculation of the reflectance Rcalc spectra of a thin film with variable thickness, which makes it possible to follow the effect of c-Si substrate critical points in the Brillouin zone and the formation of characteristics of bulk Ag at the edge of interband transitions. The calculated Rcalc spectra were compared with the experimental Rexp spectra of the Ag nanoparticle layers with different morphologies measured at the normal and oblique (45°) angle of incidence of light. For a layer consisting of coarser nanoparticles, one can observe a steep dip in the Rexp spectrum, which almost coincides with the edge of the interband transitions in bulk Ag in the UV range, and a broad dip in the Rexp spectrum with a minimum at λ = 382 nm, which demonstrates the maximum absorption of the localized plasmon resonance of Ag nanoparticles. For the samples consisting of finer particles, the dip of the interband transitions in the Rexp spectra is not observed at both angles of incidence, since the deposited Ag nanoparticles did not form a structure with the optical properties of bulk Ag, but the bulk plasmon resonance appeared at λ ~ 335 nm in the longitudinal mode at the oblique angle of incidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).

    Book  Google Scholar 

  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science, New York, 2007).

    Book  Google Scholar 

  3. V. V. Klimov, Nanoplasmonics (Fizmatlit, Moscow, 2009; Pan Stanford, Singapore, 2011).

  4. V. I. Balykin, Phys. Usp. 61, 846 (2018). https://doi.org/10.3367/UFNr.2017.09.038206

    Article  ADS  Google Scholar 

  5. A. Hilgerm, M. Tenfeldeu, and U. Kreibig, App. Phys. B 73, 361 (2001). https://doi.org/10.1007/s003400100712

    Article  ADS  Google Scholar 

  6. V. A. Kosobukin, Phys. Solid State 54, 2471 (2012). https://doi.org/10.1134/S1063783412120207

    Article  ADS  Google Scholar 

  7. P. V. Gladskikh, I. A. Gladskikh, N. A. Toropov, and T. A. Vartanyan, Proc. of SPIE 9884, 98842Y (2016). https://doi.org/10.1117/12.2227597

  8. A. Jo de Vries, E. S. Kooij, H. Wormeester, A. A. Mewe, and B. Poelsema, J. Appl. Phys. 101, 053703 (2007). https://doi.org/10.1063/1.2654234

    Article  ADS  Google Scholar 

  9. S. Marsillac, S. A. Little, and R. W. Collins, Thin Solid Films 519, 2936 (2011). https://doi.org/10.1016/j.tsf.2010.11.065

    Article  ADS  Google Scholar 

  10. T. W. H. Oates, H. Wormeester, and H. Arwin, Prog. Surf. Sci. 86, 328 (2011). https://doi.org/10.1016/j.progsurf.2011.08.004

    Article  ADS  Google Scholar 

  11. Yu. A. Zharova, V. A. Tolmachev, A. I. Bednaya, and S. I. Pavlov, Semiconductors 52, 316 (2018). https://doi.org/10.1134/S1063782618030235

    Article  ADS  Google Scholar 

  12. Handbook of Optical Constants of Solids, Ed. by E. D. Palik (Academic, New York, 1985), p. 804.

    Google Scholar 

  13. D. E. Aspnes, Thin Solid Films 89, 249 (1982).

    Article  ADS  Google Scholar 

  14. R. Doremus, Thin Solid Films 326, 205 (1998).

    Article  ADS  Google Scholar 

  15. A. J. MacAlister and E. A. Stern, Phys. Rev. 132, 1599 (1963).

    Article  ADS  Google Scholar 

  16. H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, D. Boreman Glenn, and M. B. Raschke, Phys. Rev. B 91, 235137 (2015). https://doi.org/10.1103/PhysRevB.91.235137

    Article  ADS  Google Scholar 

  17. G. Leveque, C. G. Olson, and D. W. Lynch, Phys. Rev. B 24, 4654 (1983).

    Article  ADS  Google Scholar 

  18. P. Winsemius, F. F. van Kampen, H. P. Lengkeek, and C. G. van Went, J. Phys. F: Met. Phys. 6, 1583 (1976).

    Article  ADS  Google Scholar 

  19. Y. Wang, E. W. Plummer, and K. Kempa, Adv. Phys. 60, 799 (2011). https://doi.org/10.1080/00018732.2011.621320

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to D.P. Shcherbinin for measuring the reflectance spectra at the oblique angle of incidence, E.V. Gushchin for measuring the thickness of the Ag nanoparticle layers, and S.I. Pavlov for the SEM images obtained at the Joint Research Center “Materials Science and Characterization in Advanced Technologies” at the Ioffe Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Tolmachev.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tolmachev, V.A., Zharova, Y.A. & Grudinkin, S.A. Study of the Optical and Plasmon Features in the Reflectance Spectra of the Silver Nanoparticle Layers Deposited from the AgNO3 onto the Silicon Surface. Opt. Spectrosc. 128, 2002–2007 (2020). https://doi.org/10.1134/S0030400X20121066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X20121066

Keywords:

Navigation