Skip to main content
Log in

Generation of an Attosecond Pulse in Helium Excited by Half-Cycle X-Ray Pulses

  • HIGH-POWER FIELDS AND ULTRASHORT OPTICAL PULSES
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Conventionally, attosecond pulses are obtained using generation of high-order optical harmonics upon excitation of various media by femtosecond laser pulses with the central frequency in the infrared range. Here, we consider theoretically an alternative possibility of obtaining an isolated extreme ultraviolet (XUV) attosecond pulse in a thin layer of helium atoms excited by a pair of half-cycle (quasi-unipolar) X-ray pulses. The approach is based on the free polarization decay of an atomic medium. An analogy of the processes under consideration with the phenomenon of superradiance is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. P. B. Corkum and F. Krausz, Nat. Phys. 3, 381 (2007).

    Article  Google Scholar 

  2. F. Krausz and M. Ivanov, Rev. Mod. Phys. 81, 163 (2009).

    Article  ADS  Google Scholar 

  3. F. Calegari et al., J. Phys. B: At., Mol. Opt. Phys. 49, 062001 (2016).

    Article  ADS  Google Scholar 

  4. V. V. Strelkov, V. T. Platonenko, A. F. Sterzhantov, and M. Yu. Ryabikin, Phys. Usp. 59, 425 (2016).

    Article  ADS  Google Scholar 

  5. K. Ramasesha, S. R. Leone, and D. M. Neumark, Ann. Rev. Phys. Chem. 67, 41 (2016).

    Article  ADS  Google Scholar 

  6. M. T. Hassan, T. T. Luu, A. Moulet, O. Raskazovskaya, et al., Nature (London, U.K.). 530, 66 (2016).

    Article  ADS  Google Scholar 

  7. M. Nisoli, P. Decleva, F. Calegari, A. Palacios, and F. Martin, Chem. Rev. 117, 10760 (2017).

    Article  Google Scholar 

  8. P. B. Corkum, Phys. Rev. Lett. 71, 1994 (1993).

    Article  ADS  Google Scholar 

  9. I. J. Sola, E. Mevel, L. Elouga, E. Constant, V. Strel-kov, et al., Nat. Phys. 2, 319 (2006).

    Article  Google Scholar 

  10. G. Chen, E. Cunningham, and Z. Chang, J. Mod. Opt. 64, 952 (2017).

    Article  ADS  Google Scholar 

  11. H. Tai, F. Li, and Z. Wang, J. Mod. Opt. 63, 1166 (2016).

    Article  ADS  Google Scholar 

  12. J. Mauritsson, P. Johnsson, E. Gustafsson, A. L’Huillier, K. J. Schafer, and M. B. Gaarde, Phys. Rev. Lett. 97, 013001 (2006).

    Article  ADS  Google Scholar 

  13. Z. Tibai, G. Tóth, M. I. Mechler, J. A. Fülöp, G. Almási, and J. Hebling, Phys. Rev. Lett. 113, 104801 (2014).

    Article  ADS  Google Scholar 

  14. H. A. Navid, R. Aghbolaghi, and Z. Yarali, J. Mod. Opt. 66, 1744 (2019).

    Article  ADS  Google Scholar 

  15. H. C. Wu and J. Meyer-ter-Vehn, Nat. Photon. 6, 304 (2012).

    Article  ADS  Google Scholar 

  16. J. Xu, B. Shen, X. Zhang, et al., Sci. Rep. 8, 2669 (2018).

    Article  ADS  Google Scholar 

  17. M. V. Arkhipov, R. M. Arkhipov, A. V. Pakhomov, I. V. Babushkin, A. Demircan, U. Morgner, and N. N. Rosanov, Opt. Lett. 42, 2189 (2017).

    Article  ADS  Google Scholar 

  18. A. V. Pakhomov, R. M. Arkhipov, M. V. Arkhipov, I. Babushkin, and N. N. Rosanov, Opt. Spectrosc. 123, 913 (2017).

    Article  ADS  Google Scholar 

  19. R. M. Arkhipov, M. V. Arkhipov, P. A. Belov, Yu. A. Tolmachev, and I. Babushkin, Laser Phys. Lett. 13, 046001 (2016).

    Article  ADS  Google Scholar 

  20. A. V. Pakhomov, R. M. Arkhipov, I. V. Babushkin, M. V. Arkhipov, Yu. A. Tolmachev, and N. N. Rosanov, Phys. Rev. A 95, 013804 (2017).

    Article  ADS  Google Scholar 

  21. R. M. Arkhipov, A. V. Pakhomov, I. Babushkin, Yu. A. Tolmachev, and N. N. Rosanov, JETP Lett. 105, 408 (2017).

    Article  ADS  Google Scholar 

  22. A. V. Pakhomov, R. M. Arkhipov, M. V. Arkhipov, A. Demircan, U. Morgner, and N. N. Rosanov, Sci. Rep. 9, 7444 (2019).

    Article  ADS  Google Scholar 

  23. R. M. Arkhipov, A. V. Pakhomov, M. V. Arkhipov, A. Demircan, U. Morgner, N. N. Rosanov, and I. Babushkin, Phys. Rev. A (in press); arXiv:1907.11488.

  24. L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Wiley, New York, 1975).

    Google Scholar 

  25. N. Ishii, K. Kaneshima, K. Kitano, T. Kanai, S. Watanabe, and J. Itatani, Nat. Commun. 5, 3331 (2014).

    Article  ADS  Google Scholar 

  26. M. Chini, K. Zhao, and Z. Chang, Nat. Photon. 8, 178 (2014).

    Article  ADS  Google Scholar 

  27. Z. Chang, P. B. Corkum, and S. R. Leone, J. Opt. Soc. Am. B 33, 1081 (2016).

    Article  ADS  Google Scholar 

  28. E. G. Bessonov, Sov. Phys. JETP 53, 433 (1981).

    Google Scholar 

  29. E. G. Bessonov, Sov. J. Quant. Electron. 22, 27 (1992).

    Article  ADS  Google Scholar 

  30. R. M. Arkhipov, M. V. Arkhipov, I. Babushkin, A. Demircan, U. Morgner, and N. N. Rosanov, Opt. Lett. 44, 1202 (2019).

    Article  ADS  Google Scholar 

  31. R. M. Arkhipov, M. V. Arkhipov, A. V. Pakhomov, and N. N. Rosanov, Opt. Spectrosc. 128, 102 (2020).

  32. N. N. Rosanov and N. V. Vysotina, J. Exp. Theor. Phys. 130, 52 (2020).

  33. R. M. Arkhipov, M. V. Arkhipov, A. A. Shimko, A. V. Pakhomov, and N. N. Rosanov, JETP Lett. 110, 15 (2019).

    Article  ADS  Google Scholar 

  34. A. Yariv, Quantum Electronics (Wiley, Chichester, 1989; Sov. Radio, Moscow, 1980).

  35. S. A. Akhmanov and S. Y. Nikitin, Physical Optics (Clarendon, Oxford, 1997; Nauka, Moscow, 2004).

  36. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier, 2013).

    MATH  Google Scholar 

  37. I. I. Sobel’man, Introduction to the Theory of Atomic Spectra (Nauka, Moscow, 1977; Pergamon, Oxford, 1972).

  38. S. E. Frish, Optical Spectra of Atoms (Fizmatlit, Moscow, Leningrad, 1963) [in Russian].

    Google Scholar 

  39. V. L. Ginzburg, Sov. Phys. Usp. 26, 713 (1983).

    Article  ADS  Google Scholar 

  40. W. D. Zhang, E. R. Brown, A. Mingardi, R. P. Mirin, N. Jahed, and D. Saeedkia, Appl. Sci. 9, 3014 (2019).

    Article  Google Scholar 

Download references

Funding

Investigations by R.M. Arkhipov and N.N. Rosanov were financially supported by the Russian Foundation for Basic Research, project nos. 20-32-70049 (theory of attosecond pulse generation and numerical simulations) and 19-02-00312 (sections devoted to the simplified classical theory for the generation of an attosecond pulse and the connection with superradiance). I. Babushkin acknowledges support from the PhoenixD innovation cluster (EXC 2122, project no. 390833453) and Deutsche Forschungsgemeinschaft, project no. BA4156/4-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Arkhipov.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arkhipov, R.M., Arkhipov, M.V., Babushkin, I. et al. Generation of an Attosecond Pulse in Helium Excited by Half-Cycle X-Ray Pulses. Opt. Spectrosc. 128, 529–535 (2020). https://doi.org/10.1134/S0030400X20040025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X20040025

Keywords:

Navigation