Skip to main content
Log in

Photocatalytic Properties of the α-Bi2O3/Bi Composition in the Visible Region Depending on Metallic Bismuth Concentration and Degree of Imperfection of the Bismuth Oxide Crystal Lattice

  • SPECTROSCOPY OF CONDENSED MATTER
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The photocatalytic activity of heterostructural α-Bi2O3/Bi compositions obtained by low-temperature pyrolysis of bismuth complexes with sorbite has been investigated. The efficiency of catalysts has been estimated based on the decomposition rate of methylene blue under illumination by visible light. The obtained catalysts are characterized by different contents of metallic Bi and different degrees of imperfection of the α-Bi2O3 lattice, which was obtained by changing the amount of sorbite in the composition of the precursor organomineral bismuth complex and varying the synthesis temperature. It is established that isothermal annealing of the α-Bi2O3/Bi compositions in air in the range of 400–600°C leads to relaxation of defects and an increase in the α-Bi2O3 lattice volume. An increase in the annealing temperature to 550°C is accompanied by a rise in the α-Bi2O3/Bi catalytic activity. However, the heterostructure degrades at higher temperatures as a result of metallic bismuth oxidation, while the catalytic activity decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Yu. M. Yukhin and Yu. I. Mikhailov, Chemistry of Bismuth Compounds and Materials (Sib. Otdel. RAN, Novosibirsk, 2001) [in Russian].

    Google Scholar 

  2. S. Sood and A. Umar, S. Kumar Mehta, and S. Kumar Kansal, Ceram. Int. 41, 3355 (2015). https://doi.org/10.1016/j.ceramint.2014.11.010

    Article  Google Scholar 

  3. J. Ke, J. Liu, H. Sun, H. Zhang, X. Duang, et al., Appl. Catal. 200, 47 (2017). https://doi.org/10.1016/j.apcatb.2016.06.071

    Article  Google Scholar 

  4. R. He, J. Zhou, H. Fu, S. Zhang, and C. Jiang, Appl. Surf. Sci. 430, 273 (2018). https://doi.org/10.1016/j.apsusc.2017.07.191

    Article  ADS  Google Scholar 

  5. A. I. Kryukov, A. L. Stroyuk, S. Ya. Kuchmii, and V. D. Pokhodenko, Nanophotocatalysis (Akademperiodika, Kiev, 2013) [in Russian].

    Google Scholar 

  6. C. Lee, S. Jeong, N. Myung, and K. Rageshwar, J. Electrochem. Soc. 161, 499 (2014). https://doi.org/10.1149/2.0421410jes

    Article  Google Scholar 

  7. S. Anandan, G. Lee, P. Chen, C. Fan, and J. Wu, Ind. Eng. Chem. Res. 49, 9729 (2014). https://doi.org/10.1021/ie101361c

    Article  Google Scholar 

  8. F. Dong, Q. Li, Y. Sun, and W. Ho, ACS Catal. 4, 4341 (2014). https://doi.org/10.1021/cs501038q

    Article  Google Scholar 

  9. Ji-yong Xia, Mo-tang Tang, Chen Cui, Sheng-ming Jin, and Yong-ming Chen, Trans. Nonferrous Met. Soc. China 22, 2289 (2012). https://doi.org/10.1016/S1003-6326(11)61462-3

    Article  Google Scholar 

  10. D. K. Avdeeva, Yu. G. Anissimov, Yu. Kh. Akhmadeev, et al., High Technology in Projects of the Russian Science Foundation (NTL, Tomsk, 2017) [in Russian].

    Google Scholar 

  11. E. Yu. Buslaeva, K. G. Kravchuk, Yu. F. Kargin, and S. P. Gubin, Inorg. Mater. 38, 582 (2002). https://doi.org/10.1023/A:1015813502466

    Article  Google Scholar 

  12. E. Hashemi, R. Poursalehi, and H. Delavari, Mater. Sci. Semicond. Process. 89, 51 (2019). https://doi.org/10.1016/j.mssp.2018.08.028

    Article  Google Scholar 

  13. S. A. Gridnev, Yu. E. Kalinin, A. V. Sitnikov, and O. V. Stognei, Nonlinear Phenomena in Nano- and Microheterogeneous Systems (BINOM. Labor. Znanii, Moscow, 2012) [in Russian].

  14. A. V. Zaitsev, O. I. Kaminskii, K. S. Makarevich, E. A. Kirichenko, S. A. Pyachin, and B. Ya. Mokritskii, Kontrol’. Diagn., No. 4, 58 (2019).

  15. A. V. Zaitsev, O. I. Kaminskii, K. S. Makarevich, and S. A. Pyachin, Byull. Nauch. Soobshch., No. 22, 57 (2017).

  16. Yu. I. Ukhanov, Optical Properties of Semiconductors (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  17. P. G. Petrosyan and L. N. Grigoryan, Tech. Phys. 62, 465 (2017). https://doi.org/10.1134/S1063784217030173

    Article  Google Scholar 

  18. J. Pankove, Optical Processes in Semiconductors (Dover, New York, 1975; Mir, Moscow, 1973).

  19. Yu. M. Artem’ev and V. K. Ryabchuk, Introduction to Heterogeneous Photocatalysis (SPb. Univ., St. Petersburg, 1999) [in Russian].

  20. G. K. Boreskov, Scientific Principles for the Selection and Production of Catalysts (SO AN SSSR, Novosibirsk, 1964), p. 7 [in Russian].

    Google Scholar 

  21. E. P. Surovoy, L. N. Bugerko, and V. E. Surovaia, Russ. J. Phys. Chem. A 87, 1556 (2013). https://doi.org/10.1134/S0036024413090239

    Article  Google Scholar 

  22. E. P. Surovoi, V. E. Surovaya, L. N. Bugerko, and S. V. Bin, Russ. J. Phys. Chem. A 86, 621 (2012). https://doi.org/10.1134/S0036024412040231

    Article  Google Scholar 

  23. Y. Maa, Q. Hana, T.-W. Chiub, X. Wanga, and J. Zhua, Catal. Today (2018). https://doi.org/10.1016/j.cattod.2018.10.005

Download references

Funding

This study was supported by grant no. 26S/2019 (June 28, 2019) of the Governor of Khabarovsk krai, “Development of Bismuth Materials Based on Low-Temperature Pyrolysis of Alditol Metal Complexes with the Aim of Obtaining Narrow-Gap Semiconductors Sensitized to Visible Light.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Kaminsky.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirichenko, E.A., Kaminsky, O.I., Zaytsev, A.V. et al. Photocatalytic Properties of the α-Bi2O3/Bi Composition in the Visible Region Depending on Metallic Bismuth Concentration and Degree of Imperfection of the Bismuth Oxide Crystal Lattice. Opt. Spectrosc. 128, 315–322 (2020). https://doi.org/10.1134/S0030400X20030091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X20030091

Keywords:

Navigation