Skip to main content
Log in

An Inverse Numerical Simulation for Simultaneous Measurement of Non Spherical Particle Size and Optical Constant by Forward Elastic Light Scattering and Transmittance

  • HIGH-PRECISION OPTICAL MEASUREMENTS AND METROLOGY
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

This numerical study investigates the feasibility of simultaneous retrieval of particle size distribution (PSD) and optical constants of spheroids by optical spectroscopy. In this simulation the particles are considered as spheroid. The aspect ratio of an oblate and prolate spheroid is set as 0.8 and 1.2, respectively. At this constant aspect ratio, the particle’s orientation has been changed by altering its major semi-axis. Two continuous wavelength lasers are employed to irradiate the particle samples. Multi-angle and multi-wavelengths elastic forward scattering intensity and the spectral collimated transmittance are employed to measure signals. For forward scattering, the spheroid is effectively replaced by a sphere of an approximated radius and the modified Mie theory is employed to calculate the scattering intensity. For the collimated transmittance, the extinction efficiency of non-spherical particle is measured based on the extended anomalous diffraction approximation. The Log-Normal distribution is used to get the volume frequency distribution of the particles and the inverse process is done by using the improved quantum particle swarm optimization. Two different sets of optical constant (e.g., complex refractive index), semi-major axis of non-spherical particle and discrete rate are retrieved by the inverse simulation. The results show that, the proposed spectroscopic technique can retrieve PSD and optical constants of non-spherical particles simultaneously within the tolerable error limit less than 10%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. J. Z. Lin, P. F. Lin, and H. J. Chen, Phys. Fluids 122001, 21 (2009).

    Google Scholar 

  2. Y. Z. Yu, L. Z. Lin, and T. L. Chan, Powder Technol. 1, 9 (2008).

    Article  Google Scholar 

  3. L. J. Wang, Z. H. Cao, M. Buser, L. D. White, C. B. Parnell, and Y. H. Zhang, J. Atmos. Environ. 66, 25 (2013).

    Article  ADS  Google Scholar 

  4. Y. T. Ren, H. Qi, X. Y. Yu, and L. M. Ruan, Opt. Commun. 389, 258 (2017).

    Article  ADS  Google Scholar 

  5. Z. Z. He, H. Qi, Y. C. Yao, and L. M. Ruan, J. Quant. Spectrosc. Radiat. Transfer 149, 117 (2014).

    Article  ADS  Google Scholar 

  6. J. Y. Zhang, H. Qi, Y. T. Ren, and L. M. Ruan, Opt. Commun. 413, 317 (2018).

    Article  ADS  Google Scholar 

  7. M. I. Mishchenko, G. Videen, V. A. Babenko, N. G. Khlebtsov, and T. Wriedt, J. Quant. Spectrosc. Radiat. Transfer 88, 3576 (2004).

    Google Scholar 

  8. T. Wriedt, J. Quant. Spectrosc. Radiat. Transfer 110, 833 (2009).

    Article  ADS  Google Scholar 

  9. J.-Q. Zhao and Y.-Q. Hu, Appl. Opt. 42, 4937 (2003).

    Article  ADS  Google Scholar 

  10. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

    Google Scholar 

  11. Y. Liu, W. P. Arnott, and J. Hallett, Appl. Opt. 37, 5019 (1998).

    Article  ADS  Google Scholar 

  12. J.-Q. Zhao and J. Li, J. Quant. Spectrosc. Radiat. Transfer 129, 287 (2013).

    Article  ADS  Google Scholar 

  13. X. Sun, H. Tang, and G. Yuan, J. Quant. Spectrosc. Radiat. Transfer 109, 89 (2008).

    Article  ADS  Google Scholar 

  14. B. Zhang, H. Qi, Y. T. Ren, S. C. Sun, and L. M. Ruan, Int. J. Heat Mass Transfer 66, 507 (2013).

    Article  Google Scholar 

  15. Z. He, H. Qi, Y. Yao, and L. Ruan, J. Quant. Spectrosc. Radiat. Transfer 149, 117 (2014).

    Article  ADS  Google Scholar 

  16. Z. He, H. Qi, Y. Wang, and L. Ruan, Opt. Commun. 328, 8 (2014).

    Article  ADS  Google Scholar 

  17. T. W. Chen, Opt. Commun. 114, 199 (1995).

    Article  ADS  Google Scholar 

  18. C. H. Jung and Y. P. Kim, J. Aerosol Sci. 39, 904 (2008).

    Article  ADS  Google Scholar 

  19. G. R. Fournier and B. T. Evans, Appl. Opt. 30, 2042 (1991).

    Article  ADS  Google Scholar 

  20. Z. Z. He, H. Qi, Q. Chen, and L. M. Ruan, Particuology 28, 6 (2016).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

A very special acknowledgment is also made to the editors and referees who make important comments to improve this paper. The authors also would like to acknowledge Mishchenko for making the T-matrix FROTRAN code available publically.

Funding

The supports of this work by the National Natural Science Foundation of China (nos. 51576053, 51806047) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Qi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M.A., Qi, H., Ren, YT. et al. An Inverse Numerical Simulation for Simultaneous Measurement of Non Spherical Particle Size and Optical Constant by Forward Elastic Light Scattering and Transmittance. Opt. Spectrosc. 127, 1133–1140 (2019). https://doi.org/10.1134/S0030400X19120336

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X19120336

Keywords:

Navigation