Skip to main content
Log in

Comparison of Characteristics of Waveguide Refractometric Sensors

  • HIGH-PRECISION OPTICAL MEASUREMENTS AND METROLOGY
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The operation of three types of waveguide refractometric sensors—interferometric Mach–Zehnder, interferometric two-mode, and grating waveguide—has been analyzed. The design features of these sensors with division into functional blocks have been considered. The overall dimensions of sensors based on chalcogenide glasses have been calculated to obtain the same detection limit for the gas analyzed medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, Biosens. Bioelectron. 58, 287 (2014). https://doi.org/10.1016/j.bios.2014.02.049

    Article  Google Scholar 

  2. R. Germann, H. W. M. Salemink, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, J. Electrochem. Soc. 147, 2237 (2000). https://doi.org/10.1149/1.1393513

    Article  Google Scholar 

  3. Th. E. Gartmann and F. Kehl, Biosensors 5, 187 (2015). https://doi.org/10.3390/bios5020187

    Article  Google Scholar 

  4. K. Schmitt, K. Oehse, G. Sulz, and C. Hoffmann, Sensors 8, 711 (2008). https://doi.org/10.3390/s8020711

    Article  Google Scholar 

  5. F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, Nanotechnology 14, 907 (2003). https://doi.org/10.1088/0957-4484/14/8/312

    Article  ADS  Google Scholar 

  6. K. E. Zinoviev, A. B. González-Guerrero, C. Domínguez, and L. M. Lechuga, J. Lightwave Tech. 29, 1926 (2011). https://doi.org/10.1109/JLT.2011.2150734

  7. J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrö, S. M. De Paul, M. Textor, and N. D. Spencer, Biomaterials 23, 3699 (2002). https://doi.org/10.1016/S0142-9612(02)00103-5

    Article  Google Scholar 

  8. T. Tamir, Integrated Optics (Springer, Berlin, 1975).

    Book  Google Scholar 

  9. V. I. Nalivaiko and M. A. Ponomareva, Opt. Spectrosc. 123, 320 (2017). https://doi.org/10.7868/S0030403417080189

    Article  ADS  Google Scholar 

  10. V. I. Nalivaiko and M. A. Ponomareva, Opt. Spectrosc. 126, 439 (2019). https://doi.org/10.21883/OS.2019.04.47523.182-18

    Article  ADS  Google Scholar 

  11. K. Tiefenthaler and W. Lukosz, J. Opt. Soc. Am. B 6, 209 (1989). https://doi.org/10.1364/JOSAB.6.000209

    Article  ADS  Google Scholar 

  12. S. Dante, D. Duval, B. Sepúlveda, A. B. González-Guerrero, J. R. Sendra, and L. M. Lechuga, Opt. Express 20, 7195 (2012). https://doi.org/10.1364/OE.20.007195

    Article  ADS  Google Scholar 

  13. V. A. Kiselev, Sov. J. Quantum Electron. 4, 872 (1974).

    Article  ADS  Google Scholar 

Download references

Funding

The work was carried out as part of a state order of the Ministry of Education, state registration no. AAAA-17-117053110007-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Ponomareva.

Ethics declarations

The authors state that they have no conflict of interest.

Additional information

Translated by N. Petrov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nalivaiko, V.I., Ponomareva, M.A. Comparison of Characteristics of Waveguide Refractometric Sensors. Opt. Spectrosc. 127, 1128–1132 (2019). https://doi.org/10.1134/S0030400X19120154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X19120154

Keywords:

Navigation