Skip to main content
Log in

Spectroscopic Characteristics of Polymer Films Activated by a Supramolecular Nanodiamond Complex of Europium with Bathophenanthroline

  • SPECTROSCOPY OF CONDENSED STATES
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

New high efficiency luminescence films that convert UV radiation in a wavelength range of 220–410 nm into the europium ion luminescence are first obtained using a supramolecular diamond-containing complex of europium(III) with bathophenanthroline. The films allow the degree of radiation monochromaticity to be tuned at the main band of Eu3+ ions, centered at 615 nm. The excitation spectrum profile, as well as the half-width of the main emission band at 615 nm (a 5D07F2 transition) and the quantum yield values (in a range of ~0.3–0.8), is found to depend on the type of matrix material. The optical materials presented in the present work are promising candidates for the design of various light-emitting devices, such as screens, indicators, solar concentrators, organic LEDs, and laser media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. K. Binnemans, in Handbook on the Physics and Chemistry of Rare Earths, Ed. by G. A. Gschneidner, Jr., J.‑C. G. Bünzli, and V. K. Pecharsky (Elsevier, Amsterdam, 2005), p. 107.

    Google Scholar 

  2. T. A. Yourre, L. I. Rudaya, N. V. Klimova, and V. V. Shamanin, Semiconductors 37, 807 (2003).

    Article  ADS  Google Scholar 

  3. T. Fukuda, S. Kato, E. Kin, K. Okaniwa, H. Morikawa, Z. Honda, and N. Kamata, Opt. Mater. 32, 22 (2009).

    Article  ADS  Google Scholar 

  4. K. Binnemans, in Handbook on the Physics and Chemistry of Rare Earths, Ed. by J.-C. G. Bünzli and V. K. Pecharsky (Newnes, 2013), p. 169.

    Google Scholar 

  5. A. Gavriluta, T. Fix, A. Nonat, A. Slaoui, J. Guillemoles, and L. J. Charbonniere, J. Mater. Chem. A 5, 14031 (2017).

    Article  Google Scholar 

  6. J. Kido and Y. Okamoto, Chem. Rev. 102, 2357 (2002).

    Article  Google Scholar 

  7. P. P. Sun, J. J. Lih, and C. H. Cheng, Adv. Funct. Mater. 13, 683 (2003).

    Article  Google Scholar 

  8. A. Pereira, G. Conte, C. Zucco, W. Quirino, C. Legnani, M. Cremona, and I. Bechtold, J. Soc. Inform. Display 19, 793 (2011).

    Article  Google Scholar 

  9. B. Zhao, H. Zhang, Y. Miao, Z. Wang, L. Gao, H. Wang, Y. Hao, B. Xu, and W. Li, J. Mater. Chem. C, No. 46, 12182 (2017).

    Google Scholar 

  10. G. B. Hàdjichristov, I. L. Stefànov, S. S. Stànimirov, and I. K. Petkov, Proc. SPIE 7501, 23 (2009).

    Google Scholar 

  11. M. Mitsuishi, Sh. Kikuchi, T. Miyashita, and Y. Amao, J. Mater. Chem. 13, 2875 (2003).

    Article  Google Scholar 

  12. C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Càrlos, Adv. Mater. 22, 4499 (2010).

    Article  Google Scholar 

  13. M. Kozak, B. Kalota, S. Tkaczyk, and M. Tsvirko, J. Appl. Spectrosc. 81, 678 (2014).

    Article  ADS  Google Scholar 

  14. C. G. Gameiro, E. F. da Silva, Jr., S. Alves, G. F. de Sá, and P. Cruz, Mater. Sci. Forum 315–317, 249 (1999).

    Article  Google Scholar 

  15. N. A. Aksenova, N. N. Glagolev, V. T. Shashkova, N. L. Zaichenko, L. S. Kol’tsova, I. R. Mardaleishvili, A. I. Shienok, P. S. Timashev, B. I. Zapadinskii, and A. B. Solov’eva, Russ. J. Phys. Chem. A 82, 1570 (2008).

    Article  Google Scholar 

  16. O. Moudam, B. C. Rowan, M. Alamiry, P. Richardson, B. S. Richards, A. C. Jones, and N. Robertson, Chem. Commun. 43, 6649 (2009).

    Article  Google Scholar 

  17. A. A. Knyazev, M. E. Karyakin, A. S. Krupin, K. A. Romanova, and Yu. G. Galyametdinov, Eur. J. Inorg. Chem., 639 (2017).

  18. D. V. Lapaev, A. A. Knyazev, Yu. G. Galyametdinov, V. G. Nikiforov, V. I. Dzhabarov, and V. S. Lobkov, Vestn. Tekhnol. Univ. 20 (18), 26 (2017).

    Google Scholar 

  19. K. Lunstroot, K. Driesen, P. Nockemann, C. Görller-Walrand, K. Binnemans, S. Bellayer, J. le Bideau, and À. Vioux, Chem. Mater. 18, 5711 (2006).

    Article  Google Scholar 

  20. V. Levchenko and R. Reisfeld, Opt. Mater. 74, 187190 (2017).

    Article  Google Scholar 

  21. S. V. Kireev, R. A. Ivanov, A. A. Formanovskii, A. A. Egorov, and N. P. Kuz’mina, Russ. J. Inorg. Chem. 48, 807 (2003).

    Google Scholar 

  22. H. A. Azab, S. S. Al-Deyab, Z. M. Anwar, and R. Gh. Ahmed, J. Chem. Eng. Data 56, 833 (2011).

    Article  Google Scholar 

  23. M. A. Bochkov, A. G. Vitukhnovsky, I. V. Taidakov, A. A. Vashchenko, A. V. Katsaba, S. A. Ambrozevich, and P. N. Brunkov, Semiconductors 48, 369 (2014).

    Article  ADS  Google Scholar 

  24. V. A. Lapina, T. A. Pavich, and P. P. Pershukevich, Opt. Spectrosc. 122, 219 (2017).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Pershukevich.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by O. Maslova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lapina, V.A., Pavich, T.A. & Pershukevich, P.P. Spectroscopic Characteristics of Polymer Films Activated by a Supramolecular Nanodiamond Complex of Europium with Bathophenanthroline. Opt. Spectrosc. 127, 236–241 (2019). https://doi.org/10.1134/S0030400X19080186

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X19080186

Keywords:

Navigation