Skip to main content
Log in

A Modified Method of Faraday Rotation for Investigation of Atomic Lines of Rubidium and Potassium in Ultrathin Cells

  • SPECTROSCOPY AND PHYSICS OF ATOMS AND MOLECULES
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

A nanocell filled with atomic vapors of rubidium and potassium was used to develop a modified method of Faraday rotation. The formed lines are characterized by a spectral width that is a factor of 1.5‒2 smaller than those obtained by traditional method of Faraday rotation in nanocells. The new method allows obtaining the spectral width of atomic line that is 8 times smaller than the Doppler broadening in the case of the D2 line of rubidium and 15 time smaller than the Doppler broadening in the case of the D1,2 lines of potassium. In magnetic fields B = 100−1200 G, all atomic lines of Rb and K atoms are spectrally resolved and identified. In the case of the D2 line of Rb, it is demonstrated that the probabilities of magneto-induced transitions (87Rb, Fg = 1 → Fe = 3 and 85Rb, Fg = 2 → Fe = 4) can exceed the probabilities of the allowed transitions. Convenience and efficiency of the modified method of Faraday rotation for high-resolution spectroscopy is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. D. Budker, W. Gawlik, D. Kimball, et al., Rev. Mod. Phys. 74, 1153 (2002).

    Article  ADS  Google Scholar 

  2. V. V. Yashchuk, D. Budker, W. Gawlik, et al., Phys. Rev. Lett. 90, 253001 (2003).

    Article  ADS  Google Scholar 

  3. M. Auzinsh, D. Budker, and M. Rochester, Optically Polarized Atoms: Understanding Light-Atom Interactions (Oxford Univ. Press, Oxford, 2010).

    MATH  Google Scholar 

  4. Y. Wang, X. Zhang, D. Wang, Z. Tao, W. Zhuang, and J. Chen, Opt. Express 20, 25817 (2012).

    Article  ADS  Google Scholar 

  5. J. A. Zielińska, F. A. Beduini, N. Godbout, and M. W. Mitchell, Opt. Lett. 37, 524 (2012).

    Article  ADS  Google Scholar 

  6. M. A. Zentile, D. J. Whiting, J. Keaveney, Ch. S. Adams, and I. G. Hughes, Opt. Lett. 40, 2000 (2015).

    Article  ADS  Google Scholar 

  7. M. A. Zentile, R. Andrews, L. Weller, S. Knappe, Ch. S. Adams, and I. G. Hughes, J. Phys. B 47, 075005 (2014).

    Article  ADS  Google Scholar 

  8. A. Sargsyan, E. Pashayan-Leroy, C. Leroy, Yu. Malakyan, and D. Sarkisyan, JETP Lett. 102, 487 (2015).

    Article  ADS  Google Scholar 

  9. A. Sargsyan, E. Pashayan-Leroy, C. Leroy, and D. Sarkisyan, J. Exp. Theor. Phys. 123, 395 (2016).

    Article  ADS  Google Scholar 

  10. A. Sargsyan, A. Amiryan, S. Cartaleva, and D. Sarkisyan, J. Exp. Theor. Phys. 125, 43 (2017).

    Article  ADS  Google Scholar 

  11. A. Sargsyan, E. Clinger, E. Pashayan-Leroy, C. Leroy, A. Papoyan, and D. Sarkisyan, JETP Lett. 104, 224 (2016).

    Article  ADS  Google Scholar 

  12. T. A. Vartanyan and D. L. Lin, Phys. Rev. A 51, 1959 (1995).

    Article  ADS  Google Scholar 

  13. A. Sargsyan, A. Tonoyan, G. Hakhumyan, C. Leroy, Y. Pashayan-Leroy, and D. Sarkisyan, Europhys. Lett. 110, 23001 (2015).

    Article  ADS  Google Scholar 

  14. A. Sargsyan, A. Amiryan, C. Leroy, T. A. Vartanyan, and D. Sarkisyan, Opt. Spectrosc. 123, 139 (2017).

    Article  ADS  Google Scholar 

  15. T. Peyrot, Y. R. P. Sortais, A. Browaeys, A. Sargsyan, D. Sarkisyan, J. Keaveney, I. G. Hughes, and C. S. Adams, Phys. Rev. Lett. 120, 243401 (2018).

    Article  ADS  Google Scholar 

  16. W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation (Springer, Berlin, Heidelberg, 2004).

    Google Scholar 

  17. P. Tremblay, A. Michaud, M. Levesque, S. Thériault, M. Breton, J. Beaubien, and N. Cyr, Phys. Rev. A 42, 2766 (1990).

    Article  ADS  Google Scholar 

  18. A. Sargsyan, A. Tonoyan, G. Hakhumyan, A. Papoyan, E. Mariotti, and D. Sarkisyan, Laser Phys. Lett. 11, 055701 (2014).

    Article  ADS  Google Scholar 

  19. A. Sargsyan, E. Klinger, G. Hakhumyan, A. Tonoyan, A. Papoyan, C. Leroy, and D. Sarkisyan, J. Opt. Soc. Am. B 34, 776 (2017).

    Article  ADS  Google Scholar 

  20. A. Sargsyan, A. Tonoyan, G. Hakhumyan, and D. Sarkisyan, JETP Lett. 106, 700 (2017).

    Article  ADS  Google Scholar 

  21. A. Tonoyan, A. Sargsyan, E. Klinger, et al., Europhys. Lett. 121, 53001 (2018).

    Article  ADS  Google Scholar 

  22. A. Sargsyan, A. Amiryan, T. A. Vartanyan, and D. Sarkisyan, Opt. Spectrosc. 121, 790 (2016).

    Article  ADS  Google Scholar 

  23. M. Zentile, J. Keaveney, L. Weller, D. J. Whiting, C. S. Adams, and I. G. Hughes, Comput. Phys. Commun. 189, 162 (2015).

    Article  ADS  Google Scholar 

  24. A. Sargsyan, G. Hakhumyan, C. Leroy, Y. Pashayan-Leroy, A. Papoyan, and D. Sarkisyan, Opt. Lett. 37, 1379 (2012).

    Article  ADS  Google Scholar 

  25. B. A. Olsen, B. Patton, Y. Y. Jau, and W. Happer, Phys. Rev. A 84, 063410 (2011).

    Article  ADS  Google Scholar 

  26. A. Sargsyan, E. Klinger, A. Tonoyan, et al., J. Phys. B 51, 145001 (2018).

    Article  ADS  Google Scholar 

  27. A. Sargsyan, G. Hakhumyan, A. Papoyan, and D. Sarkisyan, JETP Lett. 101, 303 (2015).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A. Papoyan, A. Tonoyan, and G. Hakhumyan for useful discussions. A. Sargsyan, A. Amiryan, and D. Sarkisyan acknowledge support from the State Committee on Science of the Ministry of Education and Science of the Republic of Armenia (project no. SCS 18T-1C018). We also acknowledge the financial support of the Armenian National Science and Education Foundation, grant ANSEF Opt 4732. A. Amiryan is grateful to AGBU France and the Philippossian Foundation in Geneva, along with AUF & SCS (Bourse pour la mobilité scientifiques et universitaires conjoints AUF—Ministère de l’Education et des Sciences de la République d’Arménie, Comité National des sciences). T. Vartanyan carried out research within the framework of state order no. 3.4903.2017/6.7.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Sargsyan or T. A. Vartanyan.

Additional information

Translated by I. Shumai

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sargsyan, A., Amiryan, A., Vartanyan, T.A. et al. A Modified Method of Faraday Rotation for Investigation of Atomic Lines of Rubidium and Potassium in Ultrathin Cells. Opt. Spectrosc. 126, 173–180 (2019). https://doi.org/10.1134/S0030400X19030202

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X19030202

Navigation