Skip to main content
Log in

Calibration of Temperature from the Fluorescence Spectra of Lead–Fluoride Glass Doped with Erbium

  • SPECTROSCOPY OF CONDENSED STATES
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Multivariate methods are applied to the calibration of temperature in the range from 299 to 423 K for the green fluorescence spectra of erbium in lead–fluoride glass doped with 0.5 mol % of erbium and 10 mol % of ytterbium. It is shown that the regression to latent structures using the combination of moving spectral windows is characterized, among the considered methods, by the lowest value (0.2 K) of the root-mean-squared error of prediction of temperature over the test set. Artificial neural networks using two principal components as input variables, the broadband regression to latent structures, the artificial neural network using all the spectral data samples as input variables, and regression to the principal components are inferior in accuracy of the temperature calibration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. S. Xu, Y. Zhao, M. Wang, and X. Shi, Geoderma 310, 29 (2018). https://doi.org/10.1016/j.geoderma.2017.09.013

    Article  ADS  Google Scholar 

  2. M. Goodarzi, S. Sharma, H. Ramon, and W. Saeys, Trends Anal. Chem. 67, 147 (2015). https://doi.org/10.1016/j.trac.2014.12.005

    Article  Google Scholar 

  3. V. H. da Silva, J. J. da Silva, and C. F. Pereira, J. Pharm. Biomed. Anal. 134, 287 (2017). https://doi.org/10.1016/j.jpba.2016.11.036

    Article  Google Scholar 

  4. Y. Sulub and J. DeRudder, Polym. Testing 32, 802 (2013). https://doi.org/10.1016/j.polymertesting.2013.03.008

    Article  Google Scholar 

  5. C. K. Pezzei, S. A. Schönbichler, C. G. Kirchler, J. Schmelzer, S. Hussain, V. A. Huck-Pezzei, M. Popp, J. Krolitzek, G. K. Bonn, and C. W. Huck, Talanta 169, 70 (2017). https://doi.org/10.1016/j.talanta.2017.03.067

    Article  Google Scholar 

  6. P. Siriphollakul, K. Nakano, S. Kanlayanar, S. Ohashi, R. Sakai, R. Rittiron, and P. Maniwara, Food Sci. Technol. 79, 70 (2017). https://doi.org/10.1016/j.lwt.2017.01.014

    Google Scholar 

  7. M. A. Khodasevich, G. V. Sinitsyn, E. A. Skorbanova, M. V. Rogovaya, E. I. Kambur, and V. A. Aseev, Opt. Spectrosc. 120, 978 (2016). https://doi.org/10.1134/S0030400X16050155

    Article  ADS  Google Scholar 

  8. J. Skvaril, K. G. Kyprianidis, and E. Dahlquist, Appl. Spectrosc. Rev. 52, 675 (2017). https://doi.org/10.1080/05704928.2017.1289471

    Article  ADS  Google Scholar 

  9. V. A. Aseev, Yu. A. Varaksa, E. V. Kolobkova, G. V. Sinitsyn, and M. A. Khodasevich, Opt. Spectrosc. 118, 727 (2015). https://doi.org/10.1134/S0030400X15050033

    Article  ADS  Google Scholar 

  10. P. Geladi and B. Kowalski, Anal. Chim. Acta 185, 1 (1986). https://doi.org/10.1016/0003-2670(86)80028-9

    Article  Google Scholar 

  11. S. A. Wade, S. F. Collins, and G. W. Baxter, J. Appl. Phys. 94, 4743 (2003). https://doi.org/10.1063/1.1606526

    Article  ADS  Google Scholar 

  12. K. H. Esbensen and P. Geladi, Comprehens. Chemometr. 2, 211 (2009). https://doi.org/10.1016/B978-044452701-1.00043-0

    Article  Google Scholar 

  13. S. Haykin, Neural Networks: A Comprehensive Foundation (Prentice Hall, 1999).

    MATH  Google Scholar 

  14. L. Norgaard, A. Saudland, J. Wagner, J. P. Nielsen, L. Munck, and S. B. Engelsen, Appl. Spectrosc. 54, 413 (2000). https://doi.org/10.1366/0003702001949500

    Article  ADS  Google Scholar 

  15. J.-H. Jiang, R. J. Berry, H. W. Siesler, and Y. Ozaki, Anal. Chem. 74, 3555 (2002). https://doi.org/10.1021/ac011177u

    Article  Google Scholar 

  16. Y. P. Du, Y. Z. Liang, J. H. Jiang, R. J. Berry, and Y. Ozaki, Anal. Chim. Acta 501, 183 (2004). https://doi.org/10.1016/j.aca.2003.09.041

    Article  Google Scholar 

  17. P. Gill, W. Murray, and M. Wright, Practical Optimization (Academic, London, 1982).

    MATH  Google Scholar 

  18. X. Zou, J. Zhao, and Y. Li, Vibr. Spectrosc. 44, 220 (2007). https://doi.org/10.1016/j.vibspec.2006.11.005

    Article  Google Scholar 

  19. M. A. Khodasevich and V. A. Aseev, Opt. Spectrosc. 124, 748 (2018). https://doi.org/10.1134/S0030400X18050089

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the Belarusian Republican Foundation for Fundamental Research (project no. F18R-238) and the Russian Foundation for Basic Research (project no. 18-58-00043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Khodasevich.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodasevich, M.A., Aseev, V.A., Varaksa, Y.A. et al. Calibration of Temperature from the Fluorescence Spectra of Lead–Fluoride Glass Doped with Erbium. Opt. Spectrosc. 126, 216–219 (2019). https://doi.org/10.1134/S0030400X1903010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X1903010X

Navigation