Skip to main content
Log in

Optical and Electrical Properties of Graphene Oxide

  • OPTICAL MATERIALS
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The Raman spectra and the temperature dependence of the electrical resistance of graphene oxide in the process of continuous heating and cooling in an argon atmosphere in the temperature range of 300–550 K are studied. The D and G bands in the Raman spectra are described, and their nature is determined. A decrease in the D-band intensity after thermal treatment is related to a decrease in the concentration of oxygen-containing groups. This leads to a decrease in electrical resistance with increasing temperature. It is found that the resistance is independent of temperature in the range of 300–370 K, which testifies to a thermal stability of graphene oxide resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. V. Singh, D. Joung, and L. Zhai, Prog. Mater. Sci. 56, 1178 (2011).

    Article  Google Scholar 

  2. S. Pei and Hu-M. Cheng, Carbon 50, 3210 (2012).

    Article  Google Scholar 

  3. S. Stankovich, D. Dikin, R. D. Finer, et al., Carbon 45, 1558 (2007).

    Article  Google Scholar 

  4. M. J. Allen, V. C. Tung, and R. B. Kaner, Chem. Rev. 110, 132 (2010).

    Article  Google Scholar 

  5. S. Bae, H. Kim, and Y. Lee, Nat. Nanotechnol. 5, 574 (2010).

    Article  ADS  Google Scholar 

  6. K. Novoselov, V. Fal, L. Colombo, and P. Gellert, Nature (London, U.K.) 490 (7419), 192 (2012).

    Article  ADS  Google Scholar 

  7. R. Offeman and W. Hummers, J. Am. Chem. Soc. 80, 1339 (1958).

    Article  Google Scholar 

  8. Q. Bao, G. Eda, and M. Chhowalla, Nat. Chem. 2, 1015 (2010).

    Article  Google Scholar 

  9. S. Park and R. S. Ruoff II, Nat. Nanotechnol. 4, 217 (2009).

    Article  ADS  Google Scholar 

  10. W. Chen and L. Yan, Nanoscale 2, 559 (2010).

    Article  ADS  Google Scholar 

  11. G. Eda, G. Fanchini, and M. Chhowalla, Nat. Nanotechnol. 3, 270 (2008).

    Article  Google Scholar 

  12. C. Soldano, A. Mahmood, and E. Dujardin, Carbon 48, 2127 (2010).

    Article  Google Scholar 

  13. B. C. Brodie, Ann. Chim. Phys. 59, 466 (1860).

    Google Scholar 

  14. S. V. Tkachev, E. Yu. Buslaeva, and A. V. Naumkin, Inorg. Mater. 48, 796 (2012).

    Article  Google Scholar 

  15. R. Beams, L. G. Cancado, and L. Novotny, J. Phys.: Condens. Matter 27, 083002 (2015).

    ADS  Google Scholar 

  16. R. J. Nemanich and S. A. Solin, Phys. Rev. B 20, 392 (1979).

    Article  ADS  Google Scholar 

  17. Z. H. Ni, W. Chen, and X. Fan, Phys. Rev. B 77, 115416 (2008).

    Article  ADS  Google Scholar 

  18. A. Jorio, A. G. Souza Filho, and G. Dresselhaus, Phys. Rev. B 65, 155412 (2002).

    Article  ADS  Google Scholar 

  19. C. Thomsen and S. Reich, Phys. Rev. Lett. 85, 5214 (2000).

    Article  ADS  Google Scholar 

  20. A. Das, B. Chakraboty, and A. K. Sood, Bull. Mater. Sci. 31, 579 (2008).

    Article  Google Scholar 

  21. R. Saito, A. Jorio, and A. G. Souza Filho, Phys. Rev. Lett. 88, 027401 (2001).

    Article  ADS  Google Scholar 

  22. M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, Phys. Chem. Chem. Phys. 9, 1276 (2007).

    Article  Google Scholar 

  23. A. Eckmann, A. Felten, and A. Mishchenko, Nano Lett. 12, 3925 (2012).

    Article  ADS  Google Scholar 

  24. M. M. Lucchese, F. Stavale, and E. H. Ferreira, Carbon 48, 1592 (2010).

    Article  Google Scholar 

  25. L. G. Cancado, A. Jorio, and E. H. M. Ferreira, Nano Lett. 11, 3190 (2001).

    Article  ADS  Google Scholar 

  26. P. Lespade, A. Marchand, and M. Couzi, Carbon 22, 375 (1984).

    Article  Google Scholar 

  27. C. Casiraghi, A. Hartschuh, and H. Qian, Nano Lett. 9, 1433 (2009).

    Article  ADS  Google Scholar 

  28. R. Beams, L. G. Cancado, and L. Novotny, Nano Lett. 11, 1177 (2011).

    Article  ADS  Google Scholar 

  29. L. G. Cancado, M. A. Pimenta, and B. R. A. Neves, Phys. Rev. Lett. 93, 247401 (2004).

    Article  ADS  Google Scholar 

  30. X. Diez-Betriu, S. Alvarez-Garsia, and C. Botas, J. Mater. Chem. C 1, 6905 (2013).

    Article  Google Scholar 

  31. K. N. Kudin and H. C. Schniepp, Nano Lett. 8, 36 (2008).

    Article  ADS  Google Scholar 

  32. G. N. Aleksandrov, S. A. Smagulova, and A. N. Kapitonov, Ross. Nanotekhnol. 9, 18 (2014).

    Google Scholar 

  33. M. M. Lucchese, F. Stavale, and E. H. M. Ferreira, Carbon 48, 1592 (2010).

    Article  Google Scholar 

  34. K. Yang, K. Ni, Y. Wang, and T. Yu, Carbon 52, 528 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Babaev.

Additional information

Translated by M. Basieva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babaev, A.A., Zobov, M.E., Kornilov, D.Y. et al. Optical and Electrical Properties of Graphene Oxide. Opt. Spectrosc. 125, 1014–1018 (2018). https://doi.org/10.1134/S0030400X18120032

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X18120032

Navigation