Skip to main content
Log in

Optical Two-Photon Surface Nonlinear Waves

  • Fiber Optics and Integral Optics
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

A theory of the optical surface two-photon small-amplitude breather in a multilayer system of the isotropic and anisotropic left-hand metamaterials, when there are a graphene monolayer (graphene-like twodimensional material) and a transition layer with impurity optical atoms (semiconductor quantum dots), is constructed. It is shown that the system of constitutive equations for two-photon transitions and wave equation for a surface plasmon–polariton TM mode are reduced to the nonlinear Schrödinger equation with damping. Explicit analytical expressions for a surface two-photon small-amplitude self-induced transparency breather (0π-pulse) are obtained. It is shown that the optical conductivity of graphene leads to the exponential damping of intensity of a surface two-photon nonlinear wave during the propagation. One- and two-photon small-amplitude breathers in graphene are compared, and it is shown that differences between their parameters are substantial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. L. McCall and E. L. Hahn, Phys. Rev. 183, 457 (1969).

    Article  ADS  Google Scholar 

  2. A. I. Maimistov, A. M. Bahsarov, S. O. Elyutin, and Yu. M. Sklyarov, Phys. Rep. 191, 1 (1990).

    Article  ADS  Google Scholar 

  3. I. A. Poluektov, Yu. M. Popov, and V. S. Roitberg, Sov. Phys. Usp. 17, 673 (1974).

    Article  ADS  Google Scholar 

  4. L. Allen and J. N. Eberly, Optical Resonance and Two Level Atoms (Wiley-Interscience, New York, 1975).

    Google Scholar 

  5. G. T. Adamashvili, C. Weber, A. Knorr, and N. T. Adamashvili, Phys. Rev. A 75, 063808 (2007).

    Article  ADS  Google Scholar 

  6. M. Chen, D. J. Kaup, and B. A. Malomed, Phys. Rev. E 69, 056605 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  7. G. T. Adamashvili and D. J. Kaup, Phys. Rev. A 95, 053801 (2017).

    Article  ADS  Google Scholar 

  8. M. L. Nesterov, J. Bravo-Abad, A. Nikitin, F. Garcia-Vidaland, and L. Martin-Moreno, Laser Photon. Rev. 7, L7 (2013).

    Google Scholar 

  9. J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, Appl. Phys. Lett. 107, 051108 (2015).

    Article  ADS  Google Scholar 

  10. Y. Song, S. Chen, Q. Zhang, L. Li, L. Zhao, H. Zhang, and D. Tang, Opt. Express 24, 25933 (2016).

    Article  ADS  Google Scholar 

  11. J. Du, M. Zhang, Z. Guo, J. Chen, H. Zhu, G. Hu, P. Peng, Z. Zheng, and H. Zhang, Sci. Rep. 7, 42357 (2017).

    Article  ADS  Google Scholar 

  12. A. N. Grigorenko, M. Polini, and K. S. Novoselov, Nat. Photn. 6, 749 (2012).

    Article  ADS  Google Scholar 

  13. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).

    Article  ADS  Google Scholar 

  14. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature (London, U.K.) 438, 197 (2005).

    Article  ADS  Google Scholar 

  15. Yanxia Dong, Int. J. Mater. Sci. Appl. 6, 302 (2017).

    Google Scholar 

  16. G. T. Adamashvili, N. T. Adamashvili, M. D. Peikrishvili, G. N. Motsonelidze, and R. R. Koplatadze, Opt. Spectrosc. 106, 863 (2009).

    Article  ADS  Google Scholar 

  17. Xianglian Song, Zizhuo Liu, Yuanjiang Xiang, and K. Aydin, Opt. Express 26, 5469 (2018).

    Article  ADS  Google Scholar 

  18. G. T. Adamashvili, Phys. B (Amsterdam, Neth.) 454, 45 (2014).

    Article  ADS  Google Scholar 

  19. G. T. Adamashvili, Opt. Spectrosc. 119, 252 (2015).

    Article  ADS  Google Scholar 

  20. G. T. Adamashvili and D. J. Kaup, Phys. Rev. E 70, 066616 (2004).

    Article  ADS  Google Scholar 

  21. J. Lopez Gondar, R. Cipolatti, and G. E. Marques, Braz. J. Phys. 36, 960 (2006).

    Article  ADS  Google Scholar 

  22. T. Taniuti and N. Iajima, J. Math. Phys. 14, 1389 (1973).

    Article  ADS  Google Scholar 

  23. Nonlinear Spectroscopy, Ed. by N. Bloembergen (Elsevier, Amsterdam, 1977).

    Google Scholar 

  24. V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, Theory of Solitons: The Inverse Scattering Method, Monographs in Contemporary Mathematics (Nauka, Moscow, 1973; Springer, New York, 1984).

    Google Scholar 

  25. A. C. Newell, Solitons in Mathematics and Physics (SIAM, Philadelphia, 1985).

    Book  MATH  Google Scholar 

  26. M. J. Ablowitz and H. Segur, Solitons and Inverse Scattering Transform (SIAM, Philadelphia, 1981).

    Book  MATH  Google Scholar 

  27. G. T. Adamashvili, D. J. Kaup, and A. Knorr, Phys. Rev. A 90, 053835 (2014).

    Article  ADS  Google Scholar 

  28. G. T. Adamashvili, D. J. Kaup, A. Knorr, and C. Weber, Phys. Rev. A 78, 013840 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. T. Adamashvili.

Additional information

Original Russian Text © G.T. Adamashvili, 2018, published in Optika i Spektroskopiya, 2018, Vol. 125, No. 2, pp. 269–273.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adamashvili, G.T. Optical Two-Photon Surface Nonlinear Waves. Opt. Spectrosc. 125, 285–289 (2018). https://doi.org/10.1134/S0030400X18080027

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X18080027

Navigation