Skip to main content
Log in

A modified trajectory method of evaluation of multiphoton ionization probability

  • Spectroscopy of Atoms and Molecules
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Trajectory methods are successfully applied for description of the photoionization process in a strong laser field and, in particular, for multiphoton ionization. A trajectory method that we developed before is one of them. Testing using the method on such objects as hydrogen, helium, and lithium showed that it allows calculating of photoionization probabilities with separation of contributions of different multiplicities for multielectron systems in a very wide range of photopulse parameters. However, for a weak field, the method does not reproduce a correct dependence of multiphoton ionization probability on field intensity if the photon energy is below the ionization threshold. We present a procedure that makes it possible to overcome this drawback. The modified method works in a wide range of field intensities, including superatomic fields. We calculated the photoionization probability of a hydrogen atom as a simple example of its application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. B. Delone and V. P. Krainov, Springer Ser. At., Opt., Plasma Phys. 13 (2000).

  2. L. P. Rapoport, B. A. Zon, and N. L. Manakov, Theory of Multiphoton Processes in Atoms (Atomizdat, Moscow, 1978) [in Russian].

    Google Scholar 

  3. L. V. Keldysh, Sov. Phys. JETP 20, 1307 (1964).

    Google Scholar 

  4. M. V. Fedorov, J. Exp. Theor. Phys. 122, 449 (2016).

    Article  ADS  Google Scholar 

  5. V. S. Popov, Phys. Usp. 47, 855 (2004).

    Article  ADS  Google Scholar 

  6. A. M. Perelomov and V. S. Popov, Sov. Phys. JETP 25, 336 (1967).

    ADS  Google Scholar 

  7. V. S. Popov, V. P. Kuznetsov, and A. M. Perelomov, Sov. Phys. JETP 26, 222 (1967).

    ADS  Google Scholar 

  8. B. M. Karnakov, V. D. Mur, S. V. Popruzhenko, and V. S. Popov, Phys. Usp. 58, 3 (2015).

    Article  ADS  Google Scholar 

  9. D. B. Milošević, G. G. Paulus, D. Bauer, and W. Becker, J. Phys. B 39, R203 (2006).

    Article  Google Scholar 

  10. P. Agostini and L. F. DiMauro, Adv. At. Mol. Opt. Phys. 61, 117 (2012).

    Article  ADS  Google Scholar 

  11. S. V. Popruzhenko, J. Phys. B 47, 204001 (2014).

    Article  ADS  Google Scholar 

  12. S. V. Popruzhenko, G. G. Paulus, and D. Bauer, Phys. Rev. A 77, 053409 (2008).

    Article  ADS  Google Scholar 

  13. K. J. LaGattuta and J. S. Cohen, J. Phys. B 31, 5281 (1998).

    Article  ADS  Google Scholar 

  14. F. Mauger, C. Chandre, and T. Uzer, J. Phys. B 42, 165602 (2009).

    Article  ADS  Google Scholar 

  15. Jing Guo, Wei-Wei Yu, and Xue-Shen Liu, Phys. Lett. A 372, 5799 (2008).

    Article  ADS  Google Scholar 

  16. K. N. Shomsky, Z. S. Smith, and S. L. Haan, Phys. Rev. A 79, 061402(R) (2009).

    Article  ADS  Google Scholar 

  17. Jie Liu, Q. Z. Xia, J. F. Tao, and L. B. Fu, Phys. Rev. A 87, 041403(R) (2013).

    Article  ADS  Google Scholar 

  18. Xu Wang and J. H. Eberly, Phys. Rev. A 86, 013421 (2012).

    Article  ADS  Google Scholar 

  19. S. Dorit and G. R. Benny, J. Phys. Chem. A 110, 8401 (2006).

    Article  Google Scholar 

  20. A. Emmanouilidou and J.-M. Rost, J. Phys. B 39, 403 (2006).

    Article  Google Scholar 

  21. G. van de Sand and J.-M. Rost, Phys. Rev. A 62, 053403 (2000).

    Article  ADS  Google Scholar 

  22. A. B. Bichkov and V. V. Smirnov, J. Phys. A 46, 015303 (2013). doi 10.1088/1751-8113/46/1/015303

    Article  ADS  MathSciNet  Google Scholar 

  23. A. B. Bichkov and V. V. Smirnov, Laser Phys. 23, 055302 (2013). doi 10.1088/1054-660X/23/5/055302

    Article  ADS  Google Scholar 

  24. A. B. Bichkov and V. V. Smirnov, Eur. Phys. J. D 69, 190 (2015). doi 10.1140/epjd/e2015-60140-6

    Article  ADS  Google Scholar 

  25. A. B. Bichkov, A. S. Kozhina, and V. V. Smirnov, Phys. Lett. A 380, 1263 (2016). doi 10.1016/j.physleta. 2016.01.054

    Article  ADS  Google Scholar 

  26. A. S. Kozhina and V. V. Smirnov, Russ. J. Phys. Chem. B 11, 12 (2017). doi 10.7868/S0207401X17020091

    Article  Google Scholar 

  27. A. B. Bychkov, A. S. Kozhina, A. A. Mityureva, A. G. Rezikyan, and V. V. Smirnov, in Proceedings of the 6th International Conference on Photonics and Information Optics (Mosk. Inzh. Fiz. Inst., Moscow, 2017), p. 72. http://fioconf.mephi.ru/files/2017/01/FIO2017-Sbornik.pdf.

    Google Scholar 

  28. F. H. M. Faisal, J. Phys. B 6, L89 (1973).

    Article  ADS  Google Scholar 

  29. L. Praxmeyer, J. Mostowski, and K. Wódkiewicz, J. Phys. A 39, 14143 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  30. G. Duchateau, E. Cormier, and R. Gayet, Phys. Rev. A 66, 023412 (2002).

    Article  ADS  Google Scholar 

  31. V. V. Smirnov, J. Phys. A 43, 465303 (2010). doi 10.1088/1751-8113/43/46/465303

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Smirnov.

Additional information

Original Russian Text © A.B. Bychkov, A.S. Kozhina, A.A. Mityureva, V.V. Smirnov, 2017, published in Optika i Spektroskopiya, 2017, Vol. 123, No. 3, pp. 318–323.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bychkov, A.B., Kozhina, A.S., Mityureva, A.A. et al. A modified trajectory method of evaluation of multiphoton ionization probability. Opt. Spectrosc. 123, 338–343 (2017). https://doi.org/10.1134/S0030400X17090090

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X17090090

Navigation