Skip to main content
Log in

Quasi-classical description of the stark effect for an electron in an image-potential state

  • Spectroscopy of Atoms and Molecules
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The quasi-classical approximation is used for establishing the positions of the classical turning points of an electron in an image-potential state exposed to an electric field of arbitrary strength perpendicular to the metal surface. It is demonstrated that the behavior of the system in electric fields of different directions is fundamentally different, which makes the dynamics of the low-dimensional system qualitatively different from that of its three-dimensional analog. The electric field strength leading to transition from the tunnel ionization regime to the regime of above-barrier decomposition is determined. The wavefunction of the bound electron state, which explicitly takes into account the influence of the electric field, is expressed in terms of elliptic integrals. The quantization condition is formulated, and the linear and quadratic in the field corrections to the electron energy are found. It is demonstrated that the difference between the linear Stark effect calculated by means of the perturbation theory and the quasi-classical energy shift in a weak field rapidly decreases with increasing quantum level number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nanoscale Science and Technology, Ed. by R. Kelsall, I. W. Hamley, and M. Geoghegan (Wiley, Chichester, 2005).

  2. P. M. Echenique and M. E. Uranga, Surf. Sci. 247, 125 (1991).

    Article  ADS  Google Scholar 

  3. P. M. Echenique, R. Berndt, E. V. Chulkov, T. Fauster, A. Goldmann, and U. Höfer, Surf. Sci. Rep. 52, 219 (2004).

    Article  ADS  Google Scholar 

  4. S. V. Eremeev, S. S. Tsirkin, and E. V. Chulkov, Phys. Solid State 52, 1768 (2010).

    Article  ADS  Google Scholar 

  5. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 2002; Pergamon, New York, 1984).

    Google Scholar 

  6. P. M. Echenique and M. E. Uranga, Surf. Sci. 247, 125 (1991).

    Article  ADS  Google Scholar 

  7. E. V. Chulkov, V. M. Silkin, and P. M. Echenique, Surf. Sci. 391, L1217 (1997).

    Article  ADS  Google Scholar 

  8. E. V. Chulkov, V. M. Silkin, and P. M. Echenique, Surf. Sci. 437, 330 (1999).

    Article  ADS  Google Scholar 

  9. Th. Fauster, Ch. Reuß, I. L. Shumay, and M. Weinelt, Chem. Phys. 251, 111 (2000)

    Article  ADS  Google Scholar 

  10. Th. Fausterand and M. Weinelt, J. Electron Spectr. Rel. Phenom. 114–116, 269 (2001).

    Article  Google Scholar 

  11. P. M. Echenique and J. B. Pendry, Prog. Surf. Sci. 32, 111 (1990).

    Article  ADS  Google Scholar 

  12. I. L. Shumay, U. Höfer, Ch. Reuß, U. Thomann, W. Wallauer, and Th. Fauster, Phys. Rev. B 58, 13974 (1998).

    Article  ADS  Google Scholar 

  13. W. S. Fann, R. Storz, and J. Bokor, Phys. Rev. B 44, 10980 (1991).

    Article  ADS  Google Scholar 

  14. E. V. Chulkov, A. G. Borisov, J. P. Gauyacq, D. Sánchet-Portal, V. M. Silkin, V. P. Zhukiv, and P. M. Echenique, Chem. Rev. 106, 4160 (2006).

    Article  Google Scholar 

  15. P. M. Echenique, R. Berndt, E. V. Chulkov, Th. Fauster, A. Goldman, and U. Höfer, Surf. Sci. 52, 219 (2004).

    Article  Google Scholar 

  16. P. A. Golovinskii and M. A. Preobrazhenskii, Opt. Spectrosc. 118, 191 (2015).

    Article  ADS  Google Scholar 

  17. P. A. Golovinskii and M. A. Preobrazhenskii, Tech. Phys. Lett. 41, 720 (2015).

    Article  ADS  Google Scholar 

  18. R. Langer, Phys. Rev. 15, 669 (1937).

    Article  ADS  Google Scholar 

  19. B. M. Karnakov and V. P. Krainov, WKB Approximation in Atomic Physics (Springer, Berlin, 2013).

    Book  Google Scholar 

  20. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1974; Pergamon, New York, 1977).

    Google Scholar 

  21. A. B. Migdal, Qualitative Methods in Quantum Theory (Nauka, Moscow, 1975; Benjamin, Reading, MA, 1977).

    MATH  Google Scholar 

  22. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965), Chap. 17.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Golovinskii.

Additional information

Original Russian Text © P.A. Golovinskii, M.A. Preobrazhenskii, 2017, published in Optika i Spektroskopiya, 2017, Vol. 122, No. 1, pp. 133–140.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovinskii, P.A., Preobrazhenskii, M.A. Quasi-classical description of the stark effect for an electron in an image-potential state. Opt. Spectrosc. 122, 120–127 (2017). https://doi.org/10.1134/S0030400X1701009X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X1701009X

Navigation