Skip to main content
Log in

Specific features of the circular dichroism of a chiral photonic crystal with a defect layer inside in the presence of a gain

  • Physical Optics
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The specific features of the circular dichroism (CD) spectra of a cholesteric liquid crystal (CLC) layer with a defect layer inside in the presence of gain have been investigated. The features of the dependence of CD on the parameter characterizing the gain on the defect mode are analyzed for two cases: (i) gain is present in the defect layer and is absent in the CLC sublayers and (ii) gain is absent in the defect layer but is present in the CLC sublayers. It is shown that these dependences significantly differ in the two aforementioned cases. The dependences of the reflection, transmission, and absorption on the defect mode on the gain parameter have been investigated for incident light with both circular polarizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, Oxford, 1993).

    Google Scholar 

  2. V. A. Belyakov, Diffraction Optics of Complex Structured Periodic Media (Springer, New York, 1992).

    Book  Google Scholar 

  3. M. Faryad and A. Lakhtakia, Adv. Opt. Photon. 6, 225 (2014).

    Article  Google Scholar 

  4. A. H. Gevorgyan, Phys. Rev. E 92, 062501 (2015).

    Article  ADS  Google Scholar 

  5. I. P. Ilchishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Spak, JETP Lett. 32, 24 (1980).

    ADS  Google Scholar 

  6. V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, Opt. Lett. 23, 1707 (1998).

    Article  ADS  Google Scholar 

  7. Liquid Crystal Microlasers, Ed. by L. M. Blinov and R. Bartolino (Transworld Research Network, Kerala, 2010).

  8. H. Coles and S. Morris, Nat. Photon. 4, 676 (2010).

    Article  ADS  Google Scholar 

  9. A. H. Gevorgyan and M. Z. Harutyunyan, Phys. Rev. E 76, 031701 (2007).

    Article  ADS  Google Scholar 

  10. A. H. Gevorgyan, Opt. Commun. 281, 5097 (2008).

    Article  ADS  Google Scholar 

  11. A. H. Gevorgyan, A. Kocharian, and G. A. Vardanyan, Opt. Commun. 259, 455 (2006).

    Article  ADS  Google Scholar 

  12. Y.-C. Yang, Ch.-S. Kee, et al., Phys. Rev. E 60, 6852 (1999).

    Article  ADS  Google Scholar 

  13. J. Hodgkinson, Q. H. Wu, et al., Opt. Commun. 210, 201 (2002).

    Article  ADS  Google Scholar 

  14. J. Schmidtke, W. Stille, and H. Finkelmann, Phys. Rev. Lett. 90, 083902 (2003).

    Article  ADS  Google Scholar 

  15. V. I. Kopp and A. Z. Genack, Phys. Rev. Lett. 89, 033901 (2002).

    Article  ADS  Google Scholar 

  16. V. A. Belyakov and S. V. Semenov, J. Exp. Theor. Phys. 112, 694 (2011).

    Article  ADS  Google Scholar 

  17. S. Ya. Vetrov, M. V. Pyatnov, and I. V. Timofeev, Phys. Solid State 55, 1697 (2013).

    Article  ADS  Google Scholar 

  18. S. Ya. Vetrov, M. V. Pyatnov, and I. V. Timofeev, Phys. Rev. E 90, 032505 (2014).

    Article  ADS  Google Scholar 

  19. V. A. Belyakov and S. V. Semenov, J. Exp. Theor. Phys. 118, 798 (2014).

    Article  ADS  Google Scholar 

  20. V. A. Belyakov, Mol. Cryst. Liq. Cryst. 612, 81 (2015).

    Article  Google Scholar 

  21. Z. Muhammad, Q. A. Naqvi, and M. Faryad, Opt. Commun. 346, 178 (2015).

    Article  ADS  Google Scholar 

  22. A. H. Gevorgyan and K. B. Oganesyan, Laser Phys. Lett. 12, 125805 (2015).

    Article  ADS  Google Scholar 

  23. A. H. Gevorgyan, M. Z. Harutyunyan, et al., Laser Phys. Lett. 13, 046002 (2016).

    Article  ADS  Google Scholar 

  24. A. D. Rey, Soft Matter 6, 3402 (2010).

    Article  ADS  Google Scholar 

  25. A. H. Gevorgyan, Opt. Spectrosc. 92, 207 (2002).

    Article  ADS  Google Scholar 

  26. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propafation, Interference, and Diffraction of Light (Pergamon, Oxford, 1964).

    Google Scholar 

  27. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).

    Google Scholar 

  28. A. V. Dorofeenko, A. A. Zyablovskii, A. A. Pukhov, A. A. Lisyanskii, and A. P. Vinogradov, Phys. Usp. 55, 1080 (2012).

    Article  ADS  Google Scholar 

  29. A. H. Gevorgyan, A. N. Kocharian, and G. A. Vardanyan, Liq. Cryst. 43, 448 (2016).

    Article  Google Scholar 

  30. V. A. Belyakov, Mol. Cryst. Liq. Cryst. 453, 43 (2006).

    Article  Google Scholar 

  31. V. A. Belyakov, Ferroelectrics 344, 163 (2006).

    Article  Google Scholar 

  32. A. H. Gevorgyan, K. B. Oganesyan, E. M. Harutyunyan, and S. O. Arutyunyan, Opt. Commun. 283, 3707 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Gevorgyan.

Additional information

Original Russian Text © A.H. Gevorgyan, 2017, published in Optika i Spektroskopiya, 2017, Vol. 122, No. 1, pp. 161–168.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gevorgyan, A.H. Specific features of the circular dichroism of a chiral photonic crystal with a defect layer inside in the presence of a gain. Opt. Spectrosc. 122, 147–154 (2017). https://doi.org/10.1134/S0030400X17010088

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X17010088

Navigation