Skip to main content
Log in

Quantum-mechanical analysis of the intensity distribution in spectra of resonant Raman scattering spectra of aqueous solutions of tyrosine

  • Condensed-Matter Spectroscopy
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Quantum-mechanical calculations of the intensity distribution in the resonant Raman scattering spectra of aqueous solutions of tyrosine excited by laser radiation with wavelengths of 244, 229, 218, 200, and 193 nm, as well as in the nonresonant Raman scattering spectrum excited at a wavelength of 488 nm, are performed. Satisfactory agreement is achieved between the calculation results and the experimental data. It is shown that the changes in the intensity distribution observed in the spectra with a change in the excitation wavelength from 244 to 193 nm correlate with the determined changes in the contribution made by excited electronic states into the scattering tensor components. It is noted that it is necessary to take into account the Herzberg–Teller effect and that the number of excited electronic states taken into account considerably affects the calculated relative intensities of lines. The possibility of existence of several tyrosine conformers in aqueous solution at room temperature is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. J. Martinez, J. C. Alfano, and D. A. Levy, J. Mol. Spectrosc. 156, 421 (1992).

    Article  ADS  Google Scholar 

  2. B. Kierdaszuk, I. Gryczynski, A. Modrak-Wojcik, A. Browska, D. Shugar, and J. R. Lakowicz, Photochem. Photobiol. 61, 319 (1995).

    Article  Google Scholar 

  3. M. Guillaume, K. Ruud, A. Rizzo, S. Monti, Z. Lin, and X. Xu, J. Phys. Chem. B 114, 6500 (2010).

    Article  Google Scholar 

  4. H. Ren, J. D. Biggs, and S. Mukamel, J. Raman Spectrosc. 44, 544 (2013).

    Article  ADS  Google Scholar 

  5. L. Grace, R. Cohen, T. Dunn, D. Lubman, and M. S. de Vries, J. Mol. Spectrosc. 215, 204 (2002).

    Article  ADS  Google Scholar 

  6. C. Pouchert, The Aldrich Library of Infrared Spectra, 3rd ed. (Aldrich Chem. Comp., Milwaukee, Wisconsin, 1981), Vols. 1–3.

    Google Scholar 

  7. B. Hernandez, F. Pfluger, A. Adenier, S. Kruglik, and M. Ghomi, J. Phys. Chem. B 114, 15319 (2010).

    Article  Google Scholar 

  8. H. Takeuchi, N. Watanabe, Y. Satoh, and I. Harada, J. Raman Spectrosc. 20, 233 (1989).

    Article  ADS  Google Scholar 

  9. L. A. Popova, R. Kodali, R. Wetzel, and I. K. Lednev, J. Am. Chem. Soc. 132, 6324 (2010).

    Article  Google Scholar 

  10. A. V. Mikhonin, S. V. Bykov, N. S. Myshakina, and S. A. Asher, J. Phys. Chem. B 110, 1928 (2006).

    Article  Google Scholar 

  11. H. Shafaat, B. Leigh, M. Tauber, and J. Kim, J. Phys. Chem. B 113, 382 (2008).

    Article  Google Scholar 

  12. R. Rava and T. Spiro, J. Am. Chem. Soc 106, 4062 (1984).

    Article  Google Scholar 

  13. S. Asher, M. Ludwig, and C. Johnson, J. Am. Chem. Soc. 108, 3186 (1986).

    Article  Google Scholar 

  14. S. Fodor, R. Copeland, C. Grygon, and T. Spiro, J. Am. Chem. Soc. 111, 5509 (1989).

    Article  Google Scholar 

  15. I. Lednev, Methods in Protein Structure and Stability Analysis, Pt. 1: Biological Application of UV Raman Spectroscopy (Nova Science, USA, 2007), p. 25.

    Google Scholar 

  16. J. Cabalo, S. Saikin, E. Emmons, D. Rappoport, and A. Aspuru-Guzik, J. Phys. Chem. A 118, 9675 (2014).

    Article  Google Scholar 

  17. T. G. Burova, Khim. Fiz. 13 (3), 29 (1994).

    Google Scholar 

  18. T. G. Burova and A. A. Anashkin, Opt. Spectrosc. 108, 12 (2010).

    Article  ADS  Google Scholar 

  19. L. A. Curtiss, K. Raghavachari, P. C. Redfern, and J. A. Pople, J. Chem. Phys. 112, 7374 (2000).

    Article  ADS  Google Scholar 

  20. S. Banerjee, D. Kroner, and P. Saalfrank, J. Chem. Phys. 137, 534 (2012).

    Article  Google Scholar 

  21. K. Chaitanya, C. Santhamma, K. V. Prasad, and V. Veeraiah, J. At. Mol. Sci. 3, 1 (2012).

    Google Scholar 

  22. J. Casado, I. V. Hernandez, Y. Kanemitsu, and J. T. Lopez Navarrete, J. Raman Spectrosc. 31, 565 (2000).

    Article  ADS  Google Scholar 

  23. N. C. Tomson, M. R. Crimmin, T. Petrenko, L. E. Rosebrugh, S. Sproules, W. C. Boyd, R. G. Bergman, S.DeBeer, F. D. Toste, and K. Wieghardt, J. Am. Chem. Soc. 133, 18785 (2011).

    Article  Google Scholar 

  24. S. Ye, C. Riplinger, A. Hansen, C. Krebs, J. M. Bollinger, and F. Neese, Chemistry 18, 6555 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. G. Burova.

Additional information

Original Russian Text © T.G. Burova, R.S. Shcherbakov, 2016, published in Optika i Spektroskopiya, 2016, Vol. 120, No. 5, pp. 762–767.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burova, T.G., Shcherbakov, R.S. Quantum-mechanical analysis of the intensity distribution in spectra of resonant Raman scattering spectra of aqueous solutions of tyrosine. Opt. Spectrosc. 120, 721–725 (2016). https://doi.org/10.1134/S0030400X16050052

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X16050052

Keywords

Navigation