Skip to main content
Log in

Generation of singlet oxygen on the surface of metal oxides

  • Condensed-Matter Spectroscopy
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Generation of singlet oxygen on the surface of metal oxides is studied. It is shown that, under conditions of heterogeneous photo-catalysis, along with the conventional mechanism of singlet oxygen formation due to the formation of electron–hole pairs in the oxide structure, there is an additional and more efficient mechanism involving direct optical excitation of molecular oxygen adsorbed on the oxide surface. The excited adsorbate molecule then interacts with the surface or with other adsorbate molecules. It is shown that, with respect to singlet oxygen generation, yttrium oxide is more than an order of magnitude more efficient than other oxides, including titanium dioxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Y. Teoh, R. Amal, and J. Scott, J. Phys. Chem. Lett. 3, 629 (2012).

    Article  Google Scholar 

  2. A. O. Ibhadon and P. Fitzpatrick, Catalysts 3, 189 (2013).

    Article  Google Scholar 

  3. T. Matsunaga, R. Tomoda, T. Nakajima, and H. Wake, FEMS Microbiol. Lett. 29, 211 (1985).

    Article  Google Scholar 

  4. A. Khaleel, P. N. Kapoor, and K. J. Klabunde, Nanostruct. Mater. 11, 459 (1999).

    Article  Google Scholar 

  5. A. Fujishima and K. Honda, Nature 238, 37 (1972).

    Article  ADS  Google Scholar 

  6. M. Pelaez, N. T. Nolan, S. C. Pillai, et al., Appl. Catal. B 125, 331 (2012).

    Article  Google Scholar 

  7. A. di Paola, E. García-López, G. Marcì, and L. Palmisano, J. Hazard. Mater. 211–212, 3 (2012).

    Article  Google Scholar 

  8. O. K. Dalrymple, E. Stefanakos, M. A. Trotzb, and D. Y. Goswami, Appl. Catal. B: Environ. 98, 27 (2010).

    Article  Google Scholar 

  9. K. Gohre and G. C. Miller, J. Chem. Soc., Faraday Trans. I 81, 793 (1985).

    Article  Google Scholar 

  10. Y. Nosaka, T. Daimon, A. Y. Nosaka, and Y. Myrakami, Phys. Chem. Chem. Phys. 6, 2917 (2004).

    Article  Google Scholar 

  11. T. Daimon and Y. Nosaka, J. Phys. Chem. C 111, 4420 (2007).

    Article  Google Scholar 

  12. H. Saito and Y. Nosaka, J. Phys. Chem. C 118, 24648 (2014).

    Article  Google Scholar 

  13. T. Daimon, T. Hirakawa, M. Kitazawa, J. Suetake, and Y. Nosaka, Appl. Catal. A: Gen. 340, 169 (2008).

    Article  Google Scholar 

  14. I. M. Belousova, V. P. Belousov, A. V. Ermakov, V. M. Kiselev, I. M. Kislyakov, and E. N. Sosnov, Quantum Electron. 38, 280 (2008).

    Article  ADS  Google Scholar 

  15. I. V. Bagrov, I. M. Belousova, A. S. Grenishin, O. B. Danilov, A. V. Ermakov, V. M. Kiselev, I. M. Kislyakov, T. D. Murav’eva, and E. N. Sosnov, Quantum Electron. 38, 286 (2008).

    Article  ADS  Google Scholar 

  16. I. V. Bagrov, I. M. Belousova, V. M. Kiselev, I. M. Kislyakov, and E. N. Sosnov, Opt. Spectrosc. 113, 57 (2012).

    Article  ADS  Google Scholar 

  17. I. V. Bagrov, V. M. Kiselev, I. M. Kislyakov, and E. N. Sosnov, Opt. Spectrosc. 116, 567 (2014).

    Article  ADS  Google Scholar 

  18. I. V. Bagrov, V. M. Kiselev, I. M. Kislyakov, A. M. Starodubtsev, and A. N. Burchinov, Opt. Spectrosc. 118, 412 (2015).

    Article  ADS  Google Scholar 

  19. B. F. Minaev, Izv. Vyssh. Uchebn. Zaved., Ser. Fiz., No. 9, 115 (1978).

    Google Scholar 

  20. B. F. Minaev, Opt. Spectrosc. 58, 761 (1985).

    ADS  Google Scholar 

  21. R. D. Scurlock and P. R. Ogilby, J. Phys. Chem. 91, 4599 (1987).

    Article  Google Scholar 

  22. R. Schmidt and E. Afshari, J. Phys. Chem. 94, 4377 (1990).

    Article  Google Scholar 

  23. C. Schweitzer and R. Schmidt, Chem. Rev. 103, 1685 (2003).

    Article  Google Scholar 

  24. I. Fechetea, Ye. Wang, and J. C. Vedrine, Catal. Today 189, 2 (2012).

    Article  Google Scholar 

  25. A. A. Krasnovsky, A. S. Kozlov, and Ya. V. Roumbal, Photochem. Photobiol. Sci. 11, 988 (2012).

    Article  Google Scholar 

  26. A. Sivéry, F. Anquez, C. Pierlot, et al., Chem. Phys. Lett. 555, 252 (2013).

    Article  ADS  Google Scholar 

  27. A. A. Krasnovsky, and A. S. Kozlov, Biophysics 59, 199 (2014).

    Article  Google Scholar 

  28. A. N. Terenin, Photonics of Molecules of Dyes and Related Organic Compounds (Nauka, Leningrad, 1967) [in Russian].

    Google Scholar 

  29. S. C. Howells, G. Black, and L. A. Schlie, Synth. Met. 62, 1 (1994).

    Article  Google Scholar 

  30. A. Skumanich, Chem. Phys. Lett. 182, 486 (1991).

    Article  ADS  Google Scholar 

  31. H. Yagi, K. Nakajima, K. R. Koswattage, K. Nakagawa, et al., Carbon 47, 1152 (2009).

    Article  Google Scholar 

  32. J. Robertson, J. Vac. Sci. Technol. B 18, 1785 (2000).

    Article  Google Scholar 

  33. J. X. Zheng, G. Ceder, T. Maxisch, W. K. Chim, and W. K. Choi, Phys. Rev. B 73, 104101 (2006).

    Article  ADS  Google Scholar 

  34. V. H. Mudavakkat, V. V. Atuchin, V. N. Kruchinin, et al., Opt. Mater. 34, 893 (2012).

    Article  ADS  Google Scholar 

  35. M. M. Dubinin, Adsorption and Porosity (Nauka, Moscow, 1972) [in Russian]

    Google Scholar 

  36. M. M. Dubinin, in Progress in Surface and Membrane Science, Ed. by J. F. Danielli, M. D. Rosenberg, and D. A. N. Y. Cadenhead (Academic, New York, 1975).

  37. S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area and Porosity, 2nd ed. (Academic, London, 1982).

    Google Scholar 

  38. V. B. Fenelonov, Introduction to Physical Chemistry of Formation of Supramolecular Structure of Adsorbents and Catalysts (Sib. Otdel. RAN, Novosibirsk, 2004) [in Russian].

    Google Scholar 

  39. V. P. Belousov, I. M. Belousova, A. V. Ermakov, V. M. Kiselev, and E. N. Sosnov, Russ. J. Phys. Chem. A 81, 1650 (2007).

    Article  Google Scholar 

  40. V. M. Kiselev, I. M. Belousova, V. P. Belousov, and E. N. Sosnov, in Carbon Nanomaterials for Gas Adsorption, Ed. by M. L. Terranova, S. Orlanducci, and M. Rossi (Pan Stanford, Singapore, 2013), p. 161.

  41. V. P. Belousov, V. M. Kiselev, E. G. Rakov, and A. N. Burchinov, Russ. J. Phys. Chem. A 89, 453 (2015).

    Article  Google Scholar 

  42. H.-J. Freund, Phys. Status Solidi B 192, 407 (1995).

    Article  ADS  Google Scholar 

  43. M. Batzill and U. Diebold, Phys. Chem. Chem. Phys. 9, 2307 (2007).

    Article  Google Scholar 

  44. W. Zeng, T. Liu, Z. Wang, S. Tsukimoto, et al., Mater. Trans. 51, 171 (2010).

    Article  Google Scholar 

  45. I. V. Bagrov, I. M. Belousova, A. S. Grenishin, V. M. Kiselev, I. M. Kislyakov, and E. N. Sosnov, Opt. Spectrosc. 112, 935 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Kiselev.

Additional information

Original Russian Text © V.M. Kiselev, I.M. Kislyakov, A.N. Burchinov, 2016, published in Optika i Spektroskopiya, 2016, Vol. 120, No. 4, pp. 545–555.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiselev, V.M., Kislyakov, I.M. & Burchinov, A.N. Generation of singlet oxygen on the surface of metal oxides. Opt. Spectrosc. 120, 520–528 (2016). https://doi.org/10.1134/S0030400X16040123

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X16040123

Keywords

Navigation